首页> 外文期刊>IEEE Transactions on Vehicular Technology >Closed-Form Exact and Asymptotic Expressions for the Symbol Error Rate and Capacity of the src='/images/tex/246.gif' alt='H'> -Function Fading Channel
【24h】

Closed-Form Exact and Asymptotic Expressions for the Symbol Error Rate and Capacity of the src='/images/tex/246.gif' alt='H'> -Function Fading Channel

机译: src =“ / images / tex / 246.gif” alt =“ H”> -函数衰落的符号错误率和容量的封闭式精确渐近表达式渠道

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we derive and expressions for the symbol error rate (SER) and channel capacity when communicating over Fox's -function fading channel. The SER expressions are obtained for numerous practically employed modulation schemes in case of single-branch and three multiple-branch diversity receivers: maximal ratio combining (MRC), equal gain combining (EGC), and selection combining (SC). The derived exact expressions are given in terms of the univariate and multivariate Fox's -functions for which we provide a portable and efficient Python code. Since Fox's -function fading channel represents the most generalized fading model ever presented in the literature, the derived expressions subsume most of those previously presented for all the known simple and composite fading models. Moreover, easy-to-compute asymptotic expansions are provided to easily study the behavior of the SER and channel capacity at high values of the average signal-to-noise ratio (SNR). The asymptotic expansions are also useful in comparing different modulation schemes and receiver diversity combiners. Numerical and simulation results are also provided to support the mathematical analysis and prove the validity of the obtained expressions.
机译:在本文中,我们推导了通过Fox的函数衰落信道进行通信时的符号错误率(SER)和信道容量的表达式。在单分支和三个多分支分集接收机的情况下,针对许多实际采用的调制方案获得了SER表达式:最大比率合并(MRC),等增益合并(EGC)和选择合并(SC)。派生的精确表达式是根据单变量和多元Fox函数提供的,为此,我们提供了可移植且高效的Python代码。由于Fox函数衰落通道代表了文献中提出的最通用的衰落模型,因此派生表达式包含了先前为所有已知的简单和复合衰落模型所呈现的大多数表达式。此外,提供了易于计算的渐近展开,以轻松研究在平均信噪比(SNR)较高的情况下SER的行为和信道容量。渐近展开也可用于比较不同的调制方案和接收机分集组合器。还提供了数值和仿真结果以支持数学分析并证明所获得表达式的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号