首页> 外文期刊>IEEE Transactions on Vehicular Technology >Optimal Downlink Space-Time Scheduling Design With Convex Utility Functions-Multiple-Antenna Systems With Orthogonal Spatial Multiplexing
【24h】

Optimal Downlink Space-Time Scheduling Design With Convex Utility Functions-Multiple-Antenna Systems With Orthogonal Spatial Multiplexing

机译:具有凸效用函数的最优下行链路时空调度设计-正交空间复用的多天线系统

获取原文
获取原文并翻译 | 示例

摘要

It is well known that link level throughput could be significantly increased by using multiple antennae at the transmitter and receiver without increasing the bandwidth and power budget. However, optimizing the link level performance of multiple-antenna systems does not always imply achieving system level optimization. Therefore, cross-layer optimization across the link layer and the scheduling layer is very important to fully exploit the temporal and spatial dimensions of the communication channel. In this paper, we consider the optimal downlink space-time scheduling design for a general class of convex utility functions. The access point or base station is equipped with n{sub}T transmit antennas. There are K mobiles in the system with a single receive antenna. For practical reasons, we assume zero-forcing processing at the physical layer of the base station and mobile. We will apply the design framework to two common utility functions, namely the maximum throughput and the proportional fair. The cross-layer scheduling design is a mixed convex and combinatorial optimization problem and the search space of the optimalsolution is enormous. Greedy algorithm, Which has been widely used in today's wireless data systems (3G1X, high data rate system (HDR), Universal Mobile Terrestrial Service), is optimal when n{sub}T = 1. However, we found that there is a large performance penalty of greedy algorithms (relative to optimal performance) when n{sub}T > 1 and this motivates the search for more efficien{sub}T heuristics. In this paper, we will address genetic-based heuristics and discuss their complexity-performance tradeoff.
机译:众所周知,通过在发射器和接收器处使用多个天线可以显着提高链路级吞吐量,而无需增加带宽和功率预算。但是,优化多天线系统的链路级性能并不总是意味着实现系统级优化。因此,跨链路层和调度层的跨层优化对于充分利用通信信道的时间和空间维度非常重要。在本文中,我们考虑了针对一类凸效用函数的最优下行链路时空调度设计。接入点或基站配备了n {sub} T个发射天线。系统中有K个带有单个接收天线的手机。出于实际原因,我们假设在基站和移动台的物理层进行零强制处理。我们将把设计框架应用于两个常见的效用函数,即最大吞吐量和比例公平。跨层调度设计是凸和组合混合优化问题,最优解的搜索空间很大。当n {sub} T = 1时,贪婪算法在当今的无线数据系统(3G1X,高数据速率系统(HDR),通用移动地面服务)中已广泛使用。当n {sub} T> 1时,贪婪算法的性能损失(相对于最佳性能),这促使人们寻求更有效的T启发式算法。在本文中,我们将讨论基于遗传的启发式方法,并讨论其复杂性与性能之间的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号