首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >The Chebyshev-polynomials-based unified model neural networks forfunction approximation
【24h】

The Chebyshev-polynomials-based unified model neural networks forfunction approximation

机译:基于切比雪夫多项式的统一模型神经网络,用于函数逼近

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose the approximate transformable technique,nwhich includes the direct transformation and indirect transformation, tonobtain a Chebyshev-Polynomials-Based (CPB) unified model neural networksnfor feedforward/recurrent neural networks via Chebyshev polynomialsnapproximation. Based on this approximate transformable technique, wenhave derived the relationship between the single-layer neural networksnand multilayer perceptron neural networks. It is shown that the CPBnunified model neural networks can be represented as a functional linknnetworks that are based on Chebyshev polynomials, and those networks usenthe recursive least square method with forgetting factor as learningnalgorithm. It turns out that the CPB unified model neural networks notnonly has the same capability of universal approximator, but also hasnfaster learning speed than conventional feedforward/recurrent neuralnnetworks. Furthermore, we have also derived the condition such that thenunified model generating by Chebyshev polynomials is optimal in thensense of error least square approximation in the single variable ease.nComputer simulations show that the proposed method does have thencapability of universal approximator in some functional approximationnwith considerable reduction in learning time
机译:本文提出一种近似可转换技术,包括直接转换和间接转换,通过Chebyshev多项式近似逼近基于Chebyshev-Polynomials-based(CPB)的统一模型神经网络。基于这种近似可转换技术,Wenhave得出了单层神经网络和多层感知器神经网络之间的关系。结果表明,CPB统一模型神经网络可以表示为基于Chebyshev多项式的函数链接网络,并且这些网络使用以遗忘因子为学习算法的递归最小二乘法。事实证明,CPB统一模型神经网络不仅具有与通用逼近器相同的功能,而且比传统的前馈/递归神经网络具有更快的学习速度。此外,我们还推导了这样的条件,即在误差最小二乘方近似的意义上,由Chebyshev多项式生成的统一模型是最优的。在学习时间

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号