首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews >Optimal and near-optimal algorithms for multiple fault diagnosiswith unreliable tests
【24h】

Optimal and near-optimal algorithms for multiple fault diagnosiswith unreliable tests

机译:带有不可靠测试的多故障诊断的最佳算法

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of constructing optimal and near-optimalnmultiple fault diagnosis (MFD) in bipartite systems with unreliablen(imperfect) tests. It is known that exact computation of conditionalnprobabilities for MFD is NP hard. The novel feature of our diagnosticnalgorithms is the use of Lagrangian relaxation and subgradientnoptimization methods to provide: 1) near optimal solutions for the MFDnproblem and 2) upper bounds for an optimal branch and bound algorithm.nThe proposed method is illustrated using several examples. Computationalnresults indicate the following: 1) our algorithm has superiorncomputational performance to the existing algorithms (approximatelynthree orders of magnitude improvement over the algorithm by Z. Binglinnet al. (1993)); 2) near optimal algorithm generates the most likelyncandidates with a very high accuracy; 3) our algorithm can find the mostnlikely candidates in systems with as many as 1000 faults
机译:我们考虑在不可靠(不完善)测试的二部系统中构造最优和接近最优的多重故障诊断(MFD)的问题。众所周知,MFD的条件概率的精确计算是NP难的。我们的诊断算法的新功能是使用拉格朗日松弛和次梯度优化方法来提供:1)MFDn问题的最佳解和2)最佳分支定界算法的上限.n通过几个示例对本文提出的方法进行了说明。计算结果表明:1)我们的算法在计算性能上优于现有算法(比Z. Binglinnet等人(1993)的算法高约3个数量级); 2)接近最优算法以非常高的精度生成最可能的候选词; 3)我们的算法可以在多达1000个故障的系统中找到最可能的候选对象

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号