首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C >Optimal and near-optimal algorithms for multiple fault diagnosis with unreliable tests
【24h】

Optimal and near-optimal algorithms for multiple fault diagnosis with unreliable tests

机译:带有不可靠测试的多故障诊断的最佳算法和最佳算法

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of constructing optimal and near-optimal multiple fault diagnosis (MFD) in bipartite systems with unreliable (imperfect) tests. It is known that exact computation of conditional probabilities for MFD is NP hard. The novel feature of our diagnostic algorithms is the use of Lagrangian relaxation and subgradient optimization methods to provide: 1) near optimal solutions for the MFD problem and 2) upper bounds for an optimal branch and bound algorithm. The proposed method is illustrated using several examples. Computational results indicate the following: 1) our algorithm has superior computational performance to the existing algorithms (approximately three orders of magnitude improvement over the algorithm by Z. Binglin et al. (1993)); 2) near optimal algorithm generates the most likely candidates with a very high accuracy; 3) our algorithm can find the most likely candidates in systems with as many as 1000 faults.
机译:我们考虑在不可靠(不完善)测试的二部系统中构造最佳和接近最佳的多故障诊断(MFD)的问题。众所周知,MFD条件概率的精确计算是NP难的。我们的诊断算法的新功能是使用拉格朗日松弛和次梯度优化方法来提供:1)MFD问题的接近最佳解; 2)最优分支定界算法的上限。使用几个示例说明了所提出的方法。计算结果表明:1)我们的算法比现有算法具有更好的计算性能(比Z. Binglin等人(1993)的算法提高了大约三个数量级); 2)接近最佳算法以很高的精度生成最有可能的候选者; 3)我们的算法可以找到多达1000个故障的系统中最可能的候选对象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号