首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models
【24h】

Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models

机译:改进的Gath-Geva模糊聚类识别Takagi-Sugeno模糊模型

获取原文
获取原文并翻译 | 示例

摘要

The construction of interpretable Takagi-Sugeno (TS) fuzzy models by means of clustering is addressed. First, it is shown how the antecedent fuzzy sets and the corresponding consequent parameters of the TS model can be derived from clusters obtained by the Gath-Geva (GG) algorithm. To preserve the partitioning of the antecedent space, linearly transformed input variables can be used in the model. This may, however, complicate the interpretation of the rules. To form an easily interpretable model that does not use the transformed input variables, a new clustering algorithm is proposed, based on the expectation-maximization (EM) identification of Gaussian mixture models. This new technique is applied to two well-known benchmark problems: the MPG (miles per gallon) prediction and a simulated second-order nonlinear process. The obtained results are compared with results from the literature.
机译:提出了通过聚类构建可解释的Takagi-Sugeno(TS)模糊模型的方法。首先,显示了如何从Gath-Geva(GG)算法获得的聚类中得出TS模型的先前模糊集和相应的后续参数。为了保留先前空间的划分,可以在模型中使用线性变换的输入变量。但是,这可能会使规则的解释复杂化。为了形成不使用变换后的输入变量的易于解释的模型,基于高斯混合模型的期望最大化(EM)识别,提出了一种新的聚类算法。这项新技术适用于两个众所周知的基准问题:MPG(英里/加仑)预测和模拟的二阶非线性过程。将获得的结果与文献中的结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号