首页> 外文期刊>Fuzzy sets and systems >Modified Gath-Geva clustering for fuzzy segmentation of multivariate time-series
【24h】

Modified Gath-Geva clustering for fuzzy segmentation of multivariate time-series

机译:改进的Gath-Geva聚类用于多元时间序列的模糊分割

获取原文
获取原文并翻译 | 示例

摘要

Partitioning a time-series into internally homogeneous segments is an important data-mining problem. The changes of the variables of a multivariate time-series are usually vague and do not focus on any particular time point. Therefore, it is not practical to define crisp bounds of the segments. Although fuzzy clustering algorithms are widely used to group overlapping and vague objects, they cannot be directly applied to time-series segmentation, because the clusters need to be contiguous in time. This paper proposes a clustering algorithm for the simultaneous identification of local probabilistic principal component analysis (PPCA) models used to measure the homogeneity of the segments and fuzzy sets used to represent the segments in time. The algorithm favors contiguous clusters in time and is able to detect changes in the hidden structure of multivariate time-series. A fuzzy decision making algorithm based on a compatibility criteria of the clusters has been worked out to determine the required number of segments, while the required number of principal components are determined by the screeplots of the eigenvalues of the fuzzy covariance matrices. The application example shows that this new technique is a useful tool for the analysis of historical process data.
机译:将时间序列划分为内部同类片段是一个重要的数据挖掘问题。多元时间序列的变量变化通常是模糊的,并且不关注任何特定时间点。因此,定义段的清晰边界是不切实际的。尽管模糊聚类算法已广泛用于对重叠和模糊对象进行分组,但由于聚类需要在时间上连续,因此它们不能直接应用于时间序列分割。本文提出了一种聚类算法,用于同时识别用于测量线段同质性的模糊概率主成分分析(PPCA)模型和用于及时表示线段的模糊集。该算法有利于时间上连续的聚类,并且能够检测多元时间序列的隐藏结构中的变化。提出了一种基于聚类相容性准则的模糊决策算法,以确定所需的细分数量,而所需的主成分数量则由模糊协方差矩阵的特征值确定。应用示例表明,这项新技术是用于分析历史过程数据的有用工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号