首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Direct adaptive iterative learning control of nonlinear systems using an output-recurrent fuzzy neural network
【24h】

Direct adaptive iterative learning control of nonlinear systems using an output-recurrent fuzzy neural network

机译:基于输出递归模糊神经网络的非线性系统直接自适应迭代学习控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a direct adaptive iterative learning control (DAILC) based on a new output-recurrent fuzzy neural network (ORFNN) is presented for a class of repeatable nonlinear systems with unknown nonlinearities and variable initial resetting errors. In order to overcome the design difficulty due to initial state errors at the beginning of each iteration, a concept of time-varying boundary layer is employed to construct an error equation. The learning controller is then designed by using the given ORFNN to approximate an optimal equivalent controller. Some auxiliary control components are applied to eliminate approximation error and ensure learning convergence. Since the optimal ORFNN parameters for a best approximation are generally unavailable, an adaptive algorithm with projection mechanism is derived to update all the consequent, premise, and recurrent parameters during iteration processes. Only one network is required to design the ORFNN-based DAILC and the plant nonlinearities, especially the nonlinear input gain, are allowed to be totally unknown. Based on a Lyapunov-like analysis, we show that all adjustable parameters and internal signals remain bounded for all iterations. Furthermore, the norm of state tracking error vector will asymptotically converge to a tunable residual set as iteration goes to infinity. Finally, iterative learning control of two nonlinear systems, inverted pendulum system and Chua's chaotic circuit, are performed to verify the tracking performance of the proposed learning scheme.
机译:本文针对一类具有未知非线性和可变初始重置误差的可重复非线性系统,提出了一种基于新型输出递归模糊神经网络(ORFNN)的直接自适应迭代学习控制(DAILC)。为了克服每次迭代开始时由于初始状态误差而导致的设计困难,采用时变边界层的概念来构造误差方程。然后,通过使用给定的ORFNN来设计学习控制器,以近似最佳等效控制器。应用了一些辅助控制组件以消除逼近误差并确保学习收敛。由于通常无法获得用于最佳逼近的最佳ORFNN参数,因此推导了具有投影机制的自适应算法,以在迭代过程中更新所有后续,前提和循环参数。设计基于ORFNN的DAILC只需要一个网络,并且工厂非线性,尤其是非线性输入增益,是完全未知的。基于类似Lyapunov的分析,我们表明所有可调参数和内部信号在所有迭代中都保持有界。此外,随着迭代进行到无穷大,状态跟踪误差向量的范数将渐近收敛到可调残差集。最后,对两个非线性系统(倒立摆系统和蔡氏混沌电路)进行迭代学习控制,以验证所提出学习方案的跟踪性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号