首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >A hybrid neural network/genetic algorithm approach to optimizing feature extraction for signal classification
【24h】

A hybrid neural network/genetic algorithm approach to optimizing feature extraction for signal classification

机译:混合神经网络/遗传算法优化信号分类的特征提取

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a hybrid neural network/genetic algorithm technique is presented, aiming at designing a feature extractor that leads to highly separable classes in the feature space. The application upon which the system is built, is the identification of the state of human peripheral vascular tissue (i.e., normal, fibrous and calcified). The system is further tested on the classification of spectra measured from the cell nuclei in blood samples in order to distinguish normal cells from those affected by Acute Lymphoblastic Leukemia. As advantages of the proposed technique we may encounter the algorithmic nature of the design procedure, the optimized classification results and the fact that the system performance is less dependent on the classifier type to be used.
机译:本文提出了一种混合神经网络/遗传算法技术,旨在设计一种在特征空间中导致高度可分离类的特征提取器。建立该系统的应用是识别人周围血管组织的状态(即正常,纤维状和钙化)。为了从正常细胞与受急性淋巴细胞白血病影响的细胞中区分出正常水平,对该系统进一步进行了血液样本细胞核测量光谱分类的测试。作为所提出技术的优势,我们可能会遇到设计过程的算法性质,优化的分类结果以及系统性能较少依赖于要使用的分类器类型的事实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号