首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Identifying critical variables of principal components for unsupervised feature selection
【24h】

Identifying critical variables of principal components for unsupervised feature selection

机译:识别用于无监督特征选择的主成分的关键变量

获取原文
获取原文并翻译 | 示例

摘要

Principal components analysis (PCA) is probably the best-known approach to unsupervised dimensionality reduction. However, axes of the lower-dimensional space, i.e., principal components (PCs), are a set of new variables carrying no clear physical meanings. Thus, interpretation of results obtained in the lower-dimensional PCA space and data acquisition for test samples still involve all of the original measurements. To deal with this problem, we develop two algorithms to link the physically meaningless PCs back to a subset of original measurements. The main idea of the algorithms is to evaluate and select feature subsets based on their capacities to reproduce sample projections on principal axes. The strength of the new algorithms is that the computation complexity involved is significantly reduced, compared with the data structural similarity-based feature evaluation.
机译:主成分分析(PCA)可能是最著名的无监督降维方法。但是,低维空间的轴,即主成分(PC),是一组没有明确物理含义的新变量。因此,在低维PCA空间中获得的结果的解释和测试样品的数据采集仍然涉及所有原始测量。为了解决这个问题,我们开发了两种算法,将无意义的PC连接回原始测量的子集。该算法的主要思想是根据特征子集在主轴上再现样本投影的能力来评估和选择特征子集。新算法的优势在于,与基于数据结构相似度的特征评估相比,所涉及的计算复杂度大大降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号