首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Multiobjective Optimization and Hybrid Evolutionary Algorithm to Solve Constrained Optimization Problems
【24h】

Multiobjective Optimization and Hybrid Evolutionary Algorithm to Solve Constrained Optimization Problems

机译:多目标优化与混合进化算法求解约束优化问题

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel evolutionary algorithm (EA) for constrained optimization problems, i.e., the hybrid constrained optimization EA (HCOEA). This algorithm effectively combines multiobjective optimization with global and local search models. In performing the global search, a niching genetic algorithm based on tournament selection is proposed. Also, HCOEA has adopted a parallel local search operator that implements a clustering partition of the population and multiparent crossover to generate the offspring population. Then, nondominated individuals in the offspring population are used to replace the dominated individuals in the parent population. Meanwhile, the best infeasible individual replacement scheme is devised for the purpose of rapidly guiding the population toward the feasible region of the search space. During the evolutionary process, the global search model effectively promotes high population diversity, and the local search model remarkably accelerates the convergence speed. HCOEA is tested on 13 well-known benchmark functions, and the experimental results suggest that it is more robust and efficient than other state-of-the-art algorithms from the literature in terms of the selected performance metrics, such as the best, median, mean, and worst objective function values and the standard deviations
机译:本文提出了一种针对约束优化问题的新型进化算法(EA),即混合约束优化EA(HCOEA)。该算法有效地将多目标优化与全局和局部搜索模型结合在一起。在进行全局搜索时,提出了一种基于比赛选择的小生境遗传算法。此外,HCOEA还采用了并行的本地搜索运算符,该运算符实现了人口的聚类划分和多父母交叉以生成后代人口。然后,使用后代种群中的非主要个体代替亲代种群中的主要个体。同时,设计了最佳的,不可行的个人替换方案,目的是将人口迅速引导到搜索空间的可行区域。在进化过程中,全局搜索模型有效地促进了人口的高度多样性,而局部搜索模型则极大地加快了收敛速度。 HCOEA在13个著名的基准函数上进行了测试,实验结果表明,就选定的性能指标(例如最佳,中位数)而言,它比文献中的其他最新算法更健壮和高效。 ,平均和最差目标函数值以及标准偏差

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号