首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Stability Analysis and $H_{infty}$ Controller Design of Discrete-Time Fuzzy Large-Scale Systems Based on Piecewise Lyapunov Functions
【24h】

Stability Analysis and $H_{infty}$ Controller Design of Discrete-Time Fuzzy Large-Scale Systems Based on Piecewise Lyapunov Functions

机译:基于分段Lyapunov函数的离散模糊大系统稳定性分析和$ H_ {infty} $控制器设计

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with stability analysis and H infin decentralized control of discrete-time fuzzy large-scale systems based on piecewise Lyapunov functions. The fuzzy large-scale systems consist of J interconnected discrete-time Takagi-Sugeno (T-S) fuzzy subsystems, and the stability analysis is based on Lyapunov functions that are piecewise quadratic. It is shown that the stability of the discrete-time fuzzy large-scale systems can be established if a piecewise quadratic Lyapunov function can be constructed, and moreover, the function can be obtained by solving a set of linear matrix inequalities (LMIs) that are numerically feasible. The H infin controllers are also designed by solving a set of LMIs based on these powerful piecewise quadratic Lyapunov functions. It is demonstrated via numerical examples that the stability and controller synthesis results based on the piecewise quadratic Lyapunov functions are less conservative than those based on the common quadratic Lyapunov functions.
机译:本文研究基于分段Lyapunov函数的离散模糊大系统的稳定性分析和H infin分散控制。模糊大规模系统由J个互连的离散Takagi-Sugeno(T-S)模糊子系统组成,并且稳定性分析是基于分段二次的Lyapunov函数进行的。结果表明,如果可以构建分段二次Lyapunov函数,则可以建立离散模糊大系统的稳定性,此外,可以通过求解一组线性矩阵不等式(LMI)来获得该函数。在数值上可行。还基于这些强大的分段二次Lyapunov函数通过求解一组LMI来设计H infin控制器。通过数值算例表明,基于分段二次李雅普诺夫函数的稳定性和控制器综合结果不如基于常见二次李雅普诺夫函数的稳定性和控制器综合保守。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号