首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews >Eigenspace-based face recognition: a comparative study of different approaches
【24h】

Eigenspace-based face recognition: a comparative study of different approaches

机译:基于特征空间的人脸识别:不同方法的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Eigenspace-based face recognition corresponds to one of the most successful methodologies for the computational recognition of faces in digital images. Starting with the Eigenface-Algorithm, different eigenspace-based approaches for the recognition of faces have been proposed. They differ mostly in the kind of projection method used (standard, differential, or kernel eigenspace), in the projection algorithm employed, in the use of simple or differential images before/after projection, and in the similarity matching criterion or classification method employed. The aim of this paper is to present an independent comparative study among some of the main eigenspace-based approaches. We believe that carrying out independent studies is relevant, since comparisons are normally performed using the implementations of the research groups that have proposed each method, which does not consider completely equal working conditions for the algorithms. Very often, a contest between the abilities of the research groups rather than a comparison between methods is performed. This study considers theoretical aspects as well as simulations performed using the Yale Face Database, a database with few classes and several images per class, and FERET, a database with many classes and few images per class.
机译:基于特征空间的人脸识别对应于数字图像中人脸的计算识别的最成功方法之一。从特征脸算法开始,已经提出了不同的基于特征空间的人脸识别方法。它们的主要不同之处在于所用的投影方法(标准,差分或核本征空间),所采用的投影算法,在投影之前/之后使用简单或差分图像以及所采用的相似性匹配标准或分类方法。本文的目的是提出一些基于特征空间的主要方法之间的独立比较研究。我们认为开展独立研究是相关的,因为通常使用提出了每种方法的研究小组的实施方案进行比较,而这种方法并未考虑算法的完全相同的工作条件。通常,进行研究小组能力之间的竞争,而不是进行方法之间的比较。这项研究考虑了理论方面以及使用Yale Face数据库(一个具有很少类和每个类别的图像的数据库)和FERET(具有多个类并且每个类别的图像很少的数据库)进行的模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号