首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews >Toward Developing Data Warehousing Process Standards: An Ontology-Based Review of Existing Methodologies
【24h】

Toward Developing Data Warehousing Process Standards: An Ontology-Based Review of Existing Methodologies

机译:迈向开发数据仓库流程标准:基于本体的现有方法论综述

获取原文
获取原文并翻译 | 示例

摘要

A data warehouse is developed using a data warehousing process (DWP) methodology. Currently, there are a large number of methodologies available in the data warehousing market. The reason for this is the lack of any centralized attempts at creating platform-independent DWP standards. For the development of such standards, it is very important that we first examine the current practices being followed by the data warehousing industry. In this study, we review 30 commercial data warehousing methodologies and analyze the standard practices they have adopted with respect to DWP. To perform the analysis, we first develop an ontological model of DWP based on a thorough review of the literature and inputs from experts in the data warehousing field. The ontological model consists of two hierarchies: a composition hierarchy which shows the decomposition of DWP tasks such as system development, extract, transform, and load (ETL), and end-user application design; and a classification hierarchy which specifies the alternative methods or techniques available for performing the tasks. We next apply hierarchical cluster analysis to group the methodologies that share a common set of standards. Our study provides valuable insights into the prevailing standard practices for different DWP tasks-system development, requirements analysis, architecture design, data modeling, ETL, data extraction, and end-user application design-and identifies important directions for future research on DWP standardization
机译:使用数据仓库过程(DWP)方法开发数据仓库。当前,数据仓库市场中有大量可用的方法。其原因是缺乏集中创建平台独立的DWP标准的尝试。对于此类标准的开发,非常重要的一点是我们首先检查数据仓库行业正在遵循的当前实践。在这项研究中,我们回顾了30种商业数据仓库方法,并分析了他们针对DWP采取的标准做法。为了进行分析,我们首先在全面回顾文献和数据仓库领域专家的意见的基础上,开发DWP的本体模型。本体模型由两个层次组成:组成层次,显示DWP任务的分解,例如系统开发,提取,转换和加载(ETL),以及最终用户应用程序设计;分类层次结构,指定了可用于执行任务的替代方法或技术。接下来,我们将应用层次聚类分析来对共享一组通用标准的方法进行分组。我们的研究为不同DWP任务的现行标准实践提供了宝贵的见解-系统开发,需求分析,体系结构设计,数据建模,ETL,数据提取和最终用户应用程序设计-并确定了未来DWP标准化研究的重要方向

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号