首页> 外文期刊>Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on >Electric Load Forecasting Based on Locally Weighted Support Vector Regression
【24h】

Electric Load Forecasting Based on Locally Weighted Support Vector Regression

机译:基于局部加权支持向量回归的电力负荷预测

获取原文
获取原文并翻译 | 示例

摘要

The forecasting of electricity demand has become one of the major research fields in electrical engineering. Accurately estimated forecasts are essential part of an efficient power system planning and operation. In this paper, a modified version of the support vector regression (SVR) is presented to solve the load forecasting problem. The proposed model is derived by modifying the risk function of the SVR algorithm with the use of locally weighted regression (LWR) while keeping the regularization term in its original form. In addition, the weighted distance algorithm based on the Mahalanobis distance for optimizing the weighting function’s bandwidth is proposed to improve the accuracy of the algorithm. The performance of the new model is evaluated with two real-world datasets, and compared with the local SVR and some published models using the same datasets. The results show that the proposed model exhibits superior performance compare to that of LWR, local SVR, and other published models.
机译:电力需求预测已成为电气工程领域的主要研究领域之一。准确估算的预测是有效的电力系统规划和运行的重要组成部分。本文提出了一种改进的支持向量回归(SVR)版本,以解决负荷预测问题。通过使用局部加权回归(LWR)修改SVR算法的风险函数,同时将正则化项保持其原始形式,可以得出建议的模型。此外,提出了一种基于马氏距离的加权距离算法,以优化加权函数的带宽,从而提高了算法的准确性。使用两个实际数据集评估了新模型的性能,并与本地SVR和使用相同数据集的某些已发布模型进行了比较。结果表明,与LWR,本地SVR和其他已发布的模型相比,该模型具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号