首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Practical Detection of Spammers and Content Promoters in Online Video Sharing Systems
【24h】

Practical Detection of Spammers and Content Promoters in Online Video Sharing Systems

机译:在线视频共享系统中垃圾邮件发送者和内容发起者的实用检测

获取原文
获取原文并翻译 | 示例

摘要

A number of online video sharing systems, out of which YouTube is the most popular, provide features that allow users to post a video as a response to a discussion topic. These features open opportunities for users to introduce polluted content, or simply pollution, into the system. For instance, spammers may post an unrelated video as response to a popular one, aiming at increasing the likelihood of the response being viewed by a larger number of users. Moreover, content promoters may try to gain visibility to a specific video by posting a large number of (potentially unrelated) responses to boost the rank of the responded video, making it appear in the top lists maintained by the system. Content pollution may jeopardize the trust of users on the system, thus compromising its success in promoting social interactions. In spite of that, the available literature is very limited in providing a deep understanding of this problem. In this paper, we address the issue of detecting video spammers and promoters. Towards that end, we first manually build a test collection of real YouTube users, classifying them as spammers, promoters, and legitimate users. Using our test collection, we provide a characterization of content, individual, and social attributes that help distinguish each user class. We then investigate the feasibility of using supervised classification algorithms to automatically detect spammers and promoters, and assess their effectiveness in our test collection. While our classification approach succeeds at separating spammers and promoters from legitimate users, the high cost of manually labeling vast amounts of examples compromises its full potential in realistic scenarios. For this reason, we further propose an active learning approach that automatically chooses a set of examples to label, which is likely to provide the highest amount of information, drastically reducing the amount of required training data while maintaining comparable classification effect- veness.
机译:YouTube最受欢迎的许多在线视频共享系统提供的功能使用户可以发布视频,以回应讨论话题。这些功能为用户提供了将污染的内容或简单的污染引入系统的机会。例如,垃圾邮件发送者可以发布不相关的视频作为对流行视频的响应,目的是增加大量用户查看该响应的可能性。此外,内容发布者可能会通过发布大量(可能不相关的)响应来提高特定视频的可见度,从而提高响应视频的排名,使其出现在系统维护的顶部列表中。内容污染可能会损害用户对系统的信任,从而损害其在促进社交互动方面的成功。尽管如此,现有文献在提供对该问题的深刻理解方面非常有限。在本文中,我们解决了检测视频垃圾邮件发送者和启动者的问题。为此,我们首先手动构建真实YouTube用户的测试集合,将其分类为垃圾邮件发送者,发起者和合法用户。通过使用测试集,我们可以对内容,个人和社会属性进行表征,以帮助区分每个用户类别。然后,我们研究使用监督分类算法自动检测垃圾邮件发送者和启动者,并评估其在我们的测试集中的有效性。尽管我们的分类方法成功地将垃圾邮件发送者和发起者与合法用户区分开,但是手动标记大量示例的高昂成本损害了其在现实情况下的全部潜力。因此,我们进一步提出了一种主动学习方法,该方法会自动选择一组要标记的示例,这可能会提供最多的信息,从而在保持可比分类效果的同时,大大减少了所需的训练数据量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号