首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Reinforcement Learning Controller Design for Affine Nonlinear Discrete-Time Systems using Online Approximators
【24h】

Reinforcement Learning Controller Design for Affine Nonlinear Discrete-Time Systems using Online Approximators

机译:使用在线近似器的仿射非线性离散系统的强化学习控制器设计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, reinforcement learning state- and output-feedback-based adaptive critic controller designs are proposed by using the online approximators (OLAs) for a general multi-input and multioutput affine unknown nonlinear discretetime systems in the presence of bounded disturbances. The proposed controller design has two entities, an action network that is designed to produce optimal signal and a critic network that evaluates the performance of the action network. The critic estimates the cost-to-go function which is tuned online using recursive equations derived from heuristic dynamic programming. Here, neural networks (NNs) are used both for the action and critic whereas any OLAs, such as radial basis functions, splines, fuzzy logic, etc., can be utilized. For the output-feedback counterpart, an additional NN is designated as the observer to estimate the unavailable system states, and thus, separation principle is not required. The NN weight tuning laws for the controller schemes are also derived while ensuring uniform ultimate boundedness of the closed-loop system using Lyapunov theory. Finally, the effectiveness of the two controllers is tested in simulation on a pendulum balancing system and a two-link robotic arm system.
机译:在本文中,针对存在有界扰动的通用多输入多输出仿射未知非线性离散时间系统,使用在线逼近器(OLA)提出了基于强化学习状态和输出反馈的自适应批评家控制器设计。所提出的控制器设计具有两个实体,一个用于产生最佳信号的动作网络和一个评估该动作网络性能的评论器网络。评论家估计了成本函数,该函数使用启发式动态规划派生的递归方程式在线调整。此处,神经网络(NN)既用于动作也用于批评家,而任何OLA(例如径向基函数,样条曲线,模糊逻辑等)都可以使用。对于输出反馈对应项,附加的NN被指定为观察者以估计不可用的系统状态,因此不需要分离原理。还使用Lyapunov理论推导了控制器方案的NN权重调整定律,同时确保闭环系统的一致最终有界性。最后,在摆平衡系统和双连杆机械臂系统的仿真中测试了这两个控制器的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号