首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization
【24h】

An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization

机译:全局数值优化的具有新颖变异和交叉策略的自适应差分进化算法

获取原文
获取原文并翻译 | 示例

摘要

Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness-induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of achieving improved performance. The new mutation operator, which we call DE/current-to-gr_best/1, is a variant of the classical DE/current-to-best/1 scheme. It uses the best of a group (whose size is $q%$ of the population size) of randomly selected solutions from current generation to perturb the parent (target) vector, unlike DE/current-to-best/1 that always picks the best vector of the entire population to perturb the target vector. In our modified framework of recombination, a biased parent selection scheme has been incorporated by letting each mutant undergo the usual binomial crossover with one of the $p$ top-ranked individuals from the current population and not with the target vector with the same index as used in all variants of DE. A DE variant obtained by integrating the proposed mutation, crossover, and parameter adaptation strategies with the classical DE framework (developed in 1995) is compared with two classical and four state-of-the-art adaptive DE variants over 25 standard numerical benchmarks taken from the IEEE Congress on Evolutionary Computation 2005 competition and special session on real parameter optimization. Our comparative study indicates that the proposed schemes improve the performance of DE by a large magnitude such that it becomes capable of enjoying statistical superiority over the state-of-the-art DE variants for a wide variety of test problems. Finally, we experimentally demonstrate that, if one or more of our proposed strategies are integrated with exis-ning powerful DE variants such as jDE and JADE, their performances can also be enhanced.
机译:差分演化(DE)是当前关注的最强大的随机实参数优化器之一。在本文中,我们提出了一种新的突变策略,DE的二项式交叉的适应性诱导的亲本选择方案,以及一种简单但有效的方案,即通过调整其两个最重要的控制参数来达到改善性能的目的。新的变异算子,我们称为DE / current-to-gr_best / 1,是经典DE / current-to-best / 1方案的变体。它使用从当前一代中随机选择的解决方案组中的最佳方案(其大小为种群数量的q%)来干扰父(目标)向量,这与DE / current-to-best / 1始终选择整个种群的最佳向量,以扰动目标向量。在我们改良的重组框架中,通过使每个突变体与来自当前种群的$ p $排名最高的个体之一进行通常的二项式交叉,而不是与目标载体具有与用于DE的所有变体。通过将拟议的突变,交叉和参数适应策略与经典DE框架(于1995年开发)集成在一起而获得的DE变体,与从25个标准数值基准中选取的两个经典和四个最新的自适应DE变体进行比较。 IEEE进化计算大会2005竞赛和实参优化特别会议。我们的比较研究表明,所提出的方案在很大程度上提高了DE的性能,从而使其能够在各种测试问题上胜过最新的DE变体,具有统计学上的优越性。最后,我们通过实验证明,如果我们提出的一种或多种策略与现有强大的DE变体(如jDE和JADE)集成在一起,它们的性能也可以得到增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号