首页> 外文期刊>Applied computational intelligence and soft computing >Differential Evolution with Novel Mutation and Adaptive Crossover Strategies for Solving Large Scale Global Optimization Problems
【24h】

Differential Evolution with Novel Mutation and Adaptive Crossover Strategies for Solving Large Scale Global Optimization Problems

机译:解决新型全局变异问题的具有新颖变异和自适应交叉策略的差分进化

获取原文
获取原文并翻译 | 示例

摘要

This paper presents Differential Evolution algorithm for solving high-dimensional optimization problems over continuous space. The proposed algorithm, namely, ANDE, introduces a new triangular mutation rule based on the convex combination vector of the triplet denned by the three randomly chosen vectors and the difference vectors between the best, better, and the worst individuals among the three randomly selected vectors. The mutation rule is combined with the basic mutation strategy DE/rand/l/bin, where the new triangular mutation rule is applied with the probability of 2/3 since it has both exploration ability and exploitation tendency. Furthermore, we propose a novel self-adaptive scheme for gradual change of the values of the crossover rate that can excellently benefit from the past experience of the individuals in the search space during evolution process which in turn can considerably balance the common trade-off between the population diversity and convergence speed. The proposed algorithm has been evaluated on the 20 standard high-dimensional benchmark numerical optimization problems for the IEEE CEC-2010 Special Session and Competition on Large Scale Global Optimization. The comparison results between ANDE and its versions and the other seven state-of-the-art evolutionary algorithms that were all tested on this test suite indicate that the proposed algorithm and its two versions are highly competitive algorithms for solving large scale global optimization problems.
机译:本文提出了差分进化算法来解决连续空间上的高维优化问题。所提出的算法ANDE,基于由三个随机选择的向量确定的三元组的凸组合向量以及三个随机选择的向量中最佳,最佳和最差个体之间的差异向量,引入了一个新的三角突变规则。突变规则与基本的突变策略DE / rand / l / bin结合在一起,其中新的三角突变规则以2/3的概率被应用,因为它既具有勘探能力,又具有开发趋势。此外,我们提出了一种新的自适应方案,用于逐步改变交叉速率的值,该方案可以极大地受益于个体在进化过程中在搜索空间中的过去经验,从而可以在很大程度上平衡两者之间的共同权衡。人口多样性和融合速度。该算法已针对IEEE CEC-2010大型全球优化特别会议和竞赛的20个标准高维基准数值优化问题进行了评估。在该测试套件上测试的ANDE及其版本与其他七个最新进化算法之间的比较结果表明,该算法及其两个版本是解决大规模全局优化问题的高度竞争算法。

著录项

  • 来源
    《Applied computational intelligence and soft computing》 |2017年第2017期|7974218.1-7974218.8|共18页
  • 作者单位

    College of Computer and Information Systems, Al-Yamamah University, P.O. Box 45180, Riyadh 11512, Saudi Arabia,operations Research Department, Institute of Statistical Studies and Research, Cairo University, Giza 12613, Egypt;

    College of Computer and Information Systems, Al-Yamamah University, P.O. Box 45180, Riyadh 11512, Saudi Arabia,College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号