首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Data-Based Adaptive Critic Designs for Nonlinear Robust Optimal Control With Uncertain Dynamics
【24h】

Data-Based Adaptive Critic Designs for Nonlinear Robust Optimal Control With Uncertain Dynamics

机译:不确定动力学非线性鲁棒最优控制的基于数据的自适应临界设计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the infinite-horizon robust optimal control problem for a class of continuous-time uncertain nonlinear systems is investigated by using data-based adaptive critic designs. The neural network identification scheme is combined with the traditional adaptive critic technique, in order to design the nonlinear robust optimal control under uncertain environment. First, the robust optimal controller of the original uncertain system with a specified cost function is established by adding a feedback gain to the optimal controller of the nominal system. Then, a neural network identifier is employed to reconstruct the unknown dynamics of the nominal system with stability analysis. Hence, the data-based adaptive critic designs can be developed to solve the Hamilton–Jacobi–Bellman equation corresponding to the transformed optimal control problem. The uniform ultimate boundedness of the closed-loop system is also proved by using the Lyapunov approach. Finally, two simulation examples are presented to illustrate the effectiveness of the developed control strategy.
机译:利用基于数据的自适应批评家设计方法,研究了一类连续时间不确定非线性系统的无限水平鲁棒最优控制问题。将神经网络识别方案与传统的自适应批评家技术相结合,以设计不确定环境下的非线性鲁棒最优控制。首先,通过将反馈增益添加到标称系统的最优控制器来建立具有指定成本函数的原始不确定系统的鲁棒最优控制器。然后,使用神经网络标识符通过稳定性分析重建标称系统的未知动力学。因此,可以开发基于数据的自适应批评家设计来解决与变换后的最优控制问题相对应的汉密尔顿-雅各比-贝尔曼方程。通过使用Lyapunov方法也证明了闭环系统具有一致的极限有界性。最后,给出了两个仿真示例,以说明所开发控制策略的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号