首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Attribute Equilibrium Dominance Reduction Accelerator (DCCAEDR) Based on Distributed Coevolutionary Cloud and Its Application in Medical Records
【24h】

Attribute Equilibrium Dominance Reduction Accelerator (DCCAEDR) Based on Distributed Coevolutionary Cloud and Its Application in Medical Records

机译:基于分布式协同进化云的属性均衡优势降低加速器(DCCAEDR)及其在病历中的应用

获取原文
获取原文并翻译 | 示例

摘要

Aimed at the tremendous challenge of attribute reduction for big data mining and knowledge discovery, we propose a new attribute equilibrium dominance reduction accelerator (DCCAEDR) based on the distributed coevolutionary cloud model. First, the framework of -populations distributed coevolutionary MapReduce model is designed to divide the entire population into subpopulations, sharing the reward of different subpopulations’ solutions under a MapReduce cloud mechanism. Because the adaptive balancing between exploration and exploitation can be achieved in a better way, the reduction performance is guaranteed to be the same as those using the whole independent data set. Second, a novel Nash equilibrium dominance strategy of elitists under the bounded rationality regions is adopted to assist the subpopulations necessary to attain the stable status of Nash equilibrium dominance. This further enhances the accelerator’s robustness against complex noise on big data. Third, the approximation parallelism mechanism based on MapReduce is constructed to implement rule reduction by accelerating the computation of attribute equivalence classes. Consequently, the entire attribute reduction set with the equilibrium dominance solution can be achieved. Extensive simulation results have been used to illustrate the effectiveness and robustness of the proposed DCCAEDR accelerator for attribute reduction on big data. Furthermore, the DCCAEDR is applied to solve attribute reduction for traditional Chinese medical records and to segment cortical surfaces of the neonatal brain 3-D-MRI records, and the DCCAEDR shows the superior competitive results, when compared with the representative algorithms.
机译:针对大数据挖掘和知识发现中属性约简的巨大挑战,我们提出了一种基于分布式协同进化云模型的新型属性平衡优势约简加速器(DCCAEDR)。首先,人口-分布的协同进化MapReduce模型的框架旨在将整个人口划分为亚人口,在MapReduce云机制下共享不同亚人口解决方案的收益。因为可以更好地实现勘探与开发之间的自适应平衡,所以降低性能可以保证与使用整个独立数据集的性能相同。其次,在有限理性区域内采用了一种新的精英人士纳什均衡优势策略,以协助实现纳什均衡优势稳定状态所必需的亚群。这进一步增强了加速器对大数据复杂噪声的鲁棒性。第三,构建基于MapReduce的近似并行机制,通过加速属性等价类的计算来实现规则约简。因此,可以实现通过平衡支配力解决方案设置的整个属性约简。大量的仿真结果已用于说明所提出的DCCAEDR加速器用于大数据属性缩减的有效性和鲁棒性。此外,DCCAEDR用于解决传统中医记录的属性约简和分割新生儿大脑3-D-MRI记录的皮质表面,与代表性算法相比,DCCAEDR显示出优异的竞争结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号