首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Belief Rule Base Structure and Parameter Joint Optimization Under Disjunctive Assumption for Nonlinear Complex System Modeling
【24h】

Belief Rule Base Structure and Parameter Joint Optimization Under Disjunctive Assumption for Nonlinear Complex System Modeling

机译:假设下非线性复杂系统建模的置信规则库结构和参数联合优化

获取原文
获取原文并翻译 | 示例

摘要

Nonlinear complex system modeling has drawn attention from diverse fields and many approaches have been developed. Among those approaches, the advantages of the belief rule base (BRB) expert system have been shown for managing multiple types of information under uncertainty and modeling the nonlinearity present in many theoretical and practical complex systems. However, two challenges still need to be addressed. First, BRB needs to be downsized to conserve modeling and computational effort. For this challenge, a new disjunctive assumption is applied, which can significantly downsize BRB while maintaining its completeness. Second, the structure and parameters of BRB need to be jointly optimized. For this challenge, a new Akaike information criterion (AIC)-based optimization objective is derived to represent both modeling accuracy and modeling complexity. Moreover, a joint bi-level optimization model with an AIC-based objective is constructed for the BRB structure and parameters, and a bi-level optimization algorithm is proposed. Three evolutionary algorithms, namely, the genetic algorithm, particle swarm optimization algorithm, and differential evolutionary algorithm, are tested in a comparative fashion to determine the best fit for the optimization engine. The results of two practical case studies show that the joint optimization approach can identify an optimal configuration for both its structure and parameters, which is referred to as the best decision structure in this paper.
机译:非线性复杂系统建模已引起各领域的关注,并且已经开发了许多方法。在这些方法中,信念规则库(BRB)专家系统的优点已显示出在不确定性下管理多种信息并建模许多理论和实践复杂系统中存在的非线性的优势。但是,仍然需要解决两个挑战。首先,需要缩小BRB的尺寸,以节省建模和计算工作量。对于此挑战,应用了一个新的析取假设,它可以在保持完整性的同时显着缩小BRB的大小。其次,BRB的结构和参数需要共同优化。针对此挑战,派生了一个新的基于Akaike信息标准(AIC)的优化目标,以表示建模精度和建模复杂性。此外,针对BRB的结构和参数,建立了基于AIC目标的联合双层优化模型,并提出了双层优化算法。以比较方式测试了三种进化算法,即遗传算法,粒子群优化算法和差分进化算法,以确定最适合优化引擎的方法。两个实际案例研究的结果表明,联合优化方法可以为其结构和参数确定最佳配置,在本文中被称为最佳决策结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号