首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Online Forecasting of Synchronous Time Series Based on Evolving Linear Models
【24h】

Online Forecasting of Synchronous Time Series Based on Evolving Linear Models

机译:基于不断发展的线性模型的同步时间序列在线预测

获取原文
获取原文并翻译 | 示例

摘要

This paper suggests evolving linear models as a powerful alternative for online forecasting of synchronous time series. First, using a priori knowledge of an expert, all known possible features are clustered in some categories so that each category includes homogeneous features. Then, a novel evolving correlation-based forward subset selection technique is used to determine relevant features from each category. Next, based on the selected features, an estimation of the output of the system is modeled through an evolving adaptive linear regression model. In evolving systems, selected features and their associated weights could vary over time based on new incoming data samples which contain new information. Finally, a soft combination of output estimations of all categories, in a new sense of Takagi-Sugeno fuzzy system, gives the prediction of the output of the system at each sampling time. The approach offers a certain new view at the enhancement of evolving forecasting models. The proposed approach embodies recursive learning and one-step-ahead incremental algorithms that progressively modify the model to ensure continuous learning, and self-organization of the model structure and its parameters. Two real-world problems, forecasting electricity load of the Electric Reliability Council of Texas region and stock price forecasting of technology sector of Standard & Poor's 500 index, are provided to validate the developed method. Pros and cons of the proposed approach are comprehensively discussed and shown through simulation results and comparisons with other state-of-the-art techniques.
机译:本文建议将线性模型变成了同步时间序列的在线预测的强大替代方案。首先,使用专家的先验知识,所有已知可能的功能都在某些类别中群集,以便每个类别包括均匀的功能。然后,使用基于新的基于相关的前向子集选择技术来确定来自每个类别的相关特征。接下来,基于所选择的特征,通过演化的自适应线性回归模型建模系统的输出的估计。在不断发展的系统中,基于包含新信息的新进入数据示例,所选功能及其相关权重随时间而变化。最后,所有类别的输出估计的软组合,在新的Takagi-Sugeno模糊系统的新感,可以在每个采样时间预测系统的输出。该方法在增强不断发展的预测模型方面提供了一定的新视图。所提出的方法体现了递归学习和一步的增量算法,逐步修改模型以确保持续学习,以及模型结构的自我组织及其参数。提供了两个现实世界问题,预测德克萨斯州德克萨斯州电力可靠性委员会的电力负荷和标准差距500指数的技术部门的股票价格预测,以验证开发方法。通过仿真结果和与其他最先进的技术的比较,全面讨论和阐述了所提出的方法的利弊。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号