首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Intelligent Data-Driven Adaptive Method for Optimizing System Integration Scaling Factors for Touch Panel Lamination Machines
【24h】

Intelligent Data-Driven Adaptive Method for Optimizing System Integration Scaling Factors for Touch Panel Lamination Machines

机译:用于优化触摸板层压机系统集成缩放因子的智能数据驱动的自适应方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new intelligent data-driven adaptive method (IDAM) of performing automatic online searches in real time. An online implementation of the proposed IDAM achieved rapid real-time optimization of system integration scaling factors for an automatic touch panel lamination machine. The proposed IDAM combines three-level orthogonal arrays (OAs), signal-to-noise ratios (SNRs), the best combined strategy, and a stepwise ratio. Three-level OA experiments with factor values are used to perform positional experiments, and SNRs are calculated for each experimental value. After the best combination of factor values (in terms of factor effect) is determined, new three-level factor values are derived by applying a stepwise ratio and used in further three-level OA experiments. These steps are repeated until the stopping criterion is met. Compared to conventional methods, the use of the IDAM in practical industrial applications, i.e., online real-time precision positioning for automatic touch panel lamination machines, reduces the number of experiments needed to obtain the system integration scaling factors that minimize the iteration count. For example, the IDAM required less than 40 online real-time experiments with a specific stepwise ratio for system integration scaling factors that met the minimum requirement of two iterations. In 50 independent experimental runs using the robust scaling factors obtained by the method, an average of 2.15 iterations was needed to achieve a positional accuracy within 5 ${mu }ext{m}$ . The main advantage of the proposed IDAM over conventional methods is its effectiveness for automatically finding robust parameters for online alignment systems in real time and with fewer experiments.
机译:本文提出了一种新的智能数据驱动的自适应方法(IDAM)实时执行自动在线搜索。在线实施拟议的IDAM实现了自动触摸面板层压机的系统集成缩放因子的快速实时优化。所提出的IDAM结合了三级正交阵列(OAS),信噪比比(SNR),最佳组合策略和逐步比率。使用因子值的三级OA实验用于执行位置实验,并针对每个实验值计算SNR。在确定因数值(根据因子效应方面)的最佳组合之后,通过施加逐步比率并在进一步的三级OA实验中使用新的三级因子值。重复这些步骤,直到满足停止标准。与传统方法相比,在实际工业应用中使用IDAM,即自动触摸面板层压机的在线实时精密定位,减少了获得最小化迭代计数的系统集成缩放因子所需的实验次数。例如,IDAM需要小于40个在线实时实验,具有特定的逐步比率,用于系统集成缩放因子,其符合两个迭代的最低要求。在50个独立的实验运行中,使用该方法获得的鲁棒缩放因子,需要平均2.15迭代来在5美元{ mu} text {m} $内实现位置准确性。所提出的IDAM通过传统方法的主要优点是其有效性,可以实时自动找到在线对准系统的鲁棒参数,并且实验较少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号