首页> 外文期刊>IEEE Transactions on Speech and Audio Proceeding >Estimating hidden Markov model parameters so as to maximize speech recognition accuracy
【24h】

Estimating hidden Markov model parameters so as to maximize speech recognition accuracy

机译:估计隐马尔可夫模型参数,以最大化语音识别精度

获取原文
获取原文并翻译 | 示例

摘要

The problem of estimating the parameter values of hidden Markov word models for speech recognition is addressed. It is argued that maximum-likelihood estimation of the parameters via the forward-backward algorithm may not lead to values which maximize recognition accuracy. An alternative estimation procedure called corrective training, which is aimed at minimizing the number of recognition errors, is described. Corrective training is similar to a well-known error-correcting training procedure for linear classifiers and works by iteratively adjusting the parameter values so as to make correct words more probable and incorrect words less probable. There are strong parallels between corrective training and maximum mutual information estimation; the relationship of these two techniques is discussed and a comparison is made of their performance. Although it has not been proved that the corrective training algorithm converges, experimental evidence suggests that it does, and that it leads to fewer recognition errors that can be obtained with conventional training methods.
机译:解决了估计用于语音识别的隐马尔可夫单词模型的参数值的问题。有人认为,通过前向-后向算法对参数的最大似然估计可能不会导致最大化识别精度的值。描述了一种称为纠正训练的替代估计程序,旨在减少识别错误的数量。纠正训练类似于线性分类器的众所周知的纠错训练程序,并且通过迭代地调整参数值来工作,以使正确的单词更有可能出现,而错误的单词则不太可能出现。矫正训练和最大程度的相互信息估计之间有很强的相似性。讨论了这两种技术的关系,并对其性能进行了比较。尽管尚未证明纠正训练算法能够收敛,但是实验证据表明它可以收敛,并且可以减少传统训练方法可以获得的识别错误。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号