首页> 外文期刊>IEEE Transactions on Speech and Audio Proceeding >HMM-based speech recognition using state-dependent, discriminatively derived transforms on mel-warped DFT features
【24h】

HMM-based speech recognition using state-dependent, discriminatively derived transforms on mel-warped DFT features

机译:基于状态的,基于状态的,辨别性派生的,基于扭曲变形DFT特征的变换的基于HMM的语音识别

获取原文
获取原文并翻译 | 示例

摘要

In the study reported in this paper, we investigate interactions of front-end feature extraction and back-end classification techniques in hidden Markov model-based (HMM-based) speech recognition. The proposed model focuses on dimensionality reduction of the mel-warped discrete Fourier transform (DFT) feature space subject to maximal preservation of speech classification information, and aims at finding an optimal linear transformation on the mel-warped DFT according to the minimum classification error (MCE) criterion. This linear transformation, along with the HMM parameters, are automatically trained using the gradient descent method to minimize a measure of overall empirical error counts. A further generalization of the model allows integration of the discriminatively derived state-dependent transformation with the construction of dynamic feature parameters. Experimental results show that state-dependent transformation on mel-warped DFT features is superior in performance to the mel-frequency cepstral coefficients (MFCC's). An error rate reduction of 15% is obtained on a standard 39-class TIMIT phone classification task, in comparison with the conventional MCE-trained HMM using MFCC's that have not been subject to optimization during training.
机译:在本文报道的研究中,我们研究了基于隐马尔可夫模型(基于HMM)的语音识别中的前端特征提取和后端分类技术之间的交互作用。所提出的模型着重于在最大程度保留语音分类信息的情况下对梅尔翘曲离散傅里叶变换(DFT)特征空间的降维,并旨在根据最小分类误差找到对梅尔翘曲离散傅立叶变换的最佳线性变换( MCE)标准。使用梯度下降方法自动训练此线性变换以及HMM参数,以最大程度地减少对整体经验误差计数的度量。该模型的进一步概括允许将判别派生的状态相关变换与动态特征参数的构造集成在一起。实验结果表明,对mel翘曲的DFT特征进行依赖状态的转换性能优于mel频率倒谱系数(MFCC)。与传统的使用MFCC在训练过程中未进行优化的MFCC进行MCE训练的HMM相比,在标准的39类TIMIT电话分类任务上,错误率降低了15%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号