首页> 外文期刊>IEEE Transactions on Signal Processing >Task Offloading for Large-Scale Asynchronous Mobile Edge Computing: An Index Policy Approach
【24h】

Task Offloading for Large-Scale Asynchronous Mobile Edge Computing: An Index Policy Approach

机译:大型异步移动边缘计算的任务卸载:索引政策方法

获取原文
获取原文并翻译 | 示例

摘要

Mobile-edge computing (MEC) offloads computational tasks from wireless devices to network edge, and enables real-time information transmission and computing. Most existing work concerns a small-scale synchronous MEC system. In this paper, we focus on a large-scale asynchronous MEC system with random task arrivals, distinct workloads, and diverse deadlines. We formulate the offloading policy design as a restless multi-armed bandit (RMAB) to maximize the total discounted reward over the time horizon. However, the formulated RMAB is related to a PSPACE-hard sequential decision-making problem, which is intractable. To address this issue, by exploiting the Whittle index (WI) theory, we rigorously establish the WI indexability and derive a scalable closed-form solution. Consequently, in our WI policy, each user only needs to calculate its WI and report it to the BS, and the users with the highest indices are selected for task offloading. Furthermore, when the task completion ratio becomes the focus, the shorter slack time less remaining workload (STLW) priority rule is introduced into the WI policy for performance improvement. When the knowledge of user offloading energy consumption is not available prior to the offloading, we develop Bayesian learning-enabled WI policies, including maximum likelihood estimation, Bayesian learning with conjugate prior, and prior-swapping techniques. Simulation results show that the proposed policies significantly outperform the other existing policies.
机译:移动边缘计算(MEC)将无线设备的计算任务卸载到网络边缘,并实现实时信息传输和计算。大多数现有工作涉及小型同步MEC系统。在本文中,我们专注于具有随机任务到达,不同的工作负载和多样化截止日期的大型异步MEC系统。我们将卸载策略设计作为焦躁的多武装强盗(RMAB)制定,以最大化时间范围内的总折扣奖励。然而,制定的RMAB与PSPACE - 硬连续决策问题有关,这是棘手的。为了解决这个问题,通过利用WHITTE指数(WI)理论,我们严格地建立了WI可分性并得出了可扩展的闭合液。因此,在我们的Wi策略中,每个用户只需要计算其Wi并将其报告给BS,并且选择具有最高索引的用户进行任务卸载。此外,当任务完成比率变为焦点时,将较短的松弛时间较短工作负载(STLW)优先级规则被引入WI策略以进行性能改进。当在卸载之前不可用的用户卸载能量消耗时,我们开发贝叶斯学习的WI政策,包括最大似然估计,贝叶斯学习与先前的共轭和先前交换技术。仿真结果表明,建议的政策显着优于其他现有政策。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号