首页> 外文期刊>Future generation computer systems >Data quality-aware task offloading in Mobile Edge Computing: An Optimal Stopping Theory approach
【24h】

Data quality-aware task offloading in Mobile Edge Computing: An Optimal Stopping Theory approach

机译:数据质量感知任务在移动边缘计算中卸载:最佳停止理论方法

获取原文
获取原文并翻译 | 示例

摘要

An important use case of the Mobile Edge Computing (MEC) paradigm is task and data offloading. Computational offloading is beneficial for a wide variety of mobile applications on different platforms including autonomous vehicles and smartphones. With the envision deployment of MEC servers along the roads and while mobile nodes are moving and having certain tasks (or data) to be offloaded to edge servers, choosing an appropriate time and an ideally suited MEC server to guarantee the Quality of Service (QoS) is challenging. We tackle the data quality-aware offloading sequential decision making problem by adopting the principles of Optimal Stopping Theory (OST) to minimize the expected processing time. A variety of OST stochastic models and their applications to the offloading decision making problem are investigated and assessed. A performance evaluation is provided using simulation approach and real world data sets together with the assessment of baseline deterministic and stochastic offloading models. The results show that the proposed OST models can significantly minimize the expected processing time for analytics task execution and can be implemented in the mobile nodes efficiently.
机译:移动边缘计算(MEC)范例的重要用例是任务和数据卸载。计算卸载对不同平台上的各种移动应用有益,包括自动车辆和智能手机。随着MEC服务器的沿着道路,虽然移动节点正在移动并将某些任务(或数据)卸载到边缘服务器,选择适当的时间和理想的适用于MEC服务器以保证服务质量(QoS)是具有挑战性的。我们通过采用最佳停止理论(OST)的原理来解决序贯决策的数据质量感知卸载序列决策,以最小化预期的处理时间。研究并评估了各种OST随机模型及其对卸载决策问题的应用。使用仿真方法和现实世界数据集一起提供性能评估以及基线确定性和随机卸载模型的评估。结果表明,所提出的OST模型可以显着最小化分析任务执行的预期处理时间,并且可以有效地在移动节点中实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号