首页> 外文期刊>IEEE Transactions on Signal Processing >Robust Variational-Based Kalman Filter for Outlier Rejection With Correlated Measurements
【24h】

Robust Variational-Based Kalman Filter for Outlier Rejection With Correlated Measurements

机译:基于鲁棒的基于变分的卡尔曼滤波器,用于具有相关测量的异常值抑制

获取原文
获取原文并翻译 | 示例

摘要

State estimation is a fundamental task in many engineering fields, and therefore robust nonlinear filtering techniques able to cope with misspecified, uncertain and/or corrupted models must be designed for real-life applicability. In this contribution we explore nonlinear Gaussian filtering problems where measurements may be corrupted by outliers, and propose a new robust variational-based filtering methodology able to detect and mitigate their impact. This method generalizes previous contributions to the case of multiple outlier indicators for both independent and dependent observation models. An illustrative example is provided to support the discussion and show the performance improvement.
机译:状态估计是许多工程领域中的基本任务,因此必须设计能够应对错过,不确定和/或损坏的模型的强大的非线性滤波技术,以实现实际适用性。在这一贡献中,我们探索非线性高斯过滤问题,其中测量可能会被异常值损坏,并提出一种能够检测和减轻其影响的新的鲁棒基于变分的过滤方法。此方法概括了对独立和依赖观察模型的多个异常指标的案例的贡献。提供说明性示例以支持讨论并显示性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号