首页> 外文期刊>IEEE Transactions on Signal Processing >Particle Filtering for Nonlinear/Non-Gaussian Systems With Energy Harvesting Sensors Subject to Randomly Occurring Sensor Saturations
【24h】

Particle Filtering for Nonlinear/Non-Gaussian Systems With Energy Harvesting Sensors Subject to Randomly Occurring Sensor Saturations

机译:具有能量收集传感器的非线性/非高斯系统的颗粒滤波,该传感器受随机发生的传感器饱和度

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the particle filtering problem is investigated for a class of nonlinear/non-Gaussian systems with energy harvesting sensors subject to randomly occurring sensor saturations (ROSSs). The random occurrences of the sensor saturations are characterized by a series of Bernoulli distributed stochastic variables with known probability distributions. The energy harvesting sensor transmits its measurement output to the remote filter only when the current energy level is sufficient, where the transmission probability of the measurement is recursively calculated by using the probability distribution of the sensor energy level. The effects of the ROSSs and the possible measurement losses induced by insufficient energies are fully considered in the design of filtering scheme, and an explicit expression of the likelihood function is derived. Finally, the numerical simulation examples (including a benchmark example for nonlinear filtering and the applications in moving target tracking problem) are provided to demonstrate the feasibility and effectiveness of the proposed particle filtering algorithm.
机译:在本文中,研究了一类具有能量收集传感器的非线性/非高斯系统的颗粒滤波问题,该传感器受到随机发生的传感器饱和度(罗斯)。传感器饱和的随机出现的特征在于具有已知概率分布的一系列Bernoulli分布式随机变量。当电流能级足够时,能量收集传感器仅将其测量输出传输到远程滤波器,其中通过使用传感器能量水平的概率分布来递归地计算测量的传输概率。在过滤方案的设计中完全考虑了罗斯对罗斯和可能的测量损耗的影响,并且衍生出似然函数的显式表达。最后,提供了数值模拟示例(包括用于非线性滤波的基准示例以及移动目标跟踪问题中的应用),以证明所提出的粒子滤波算法的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号