首页> 外文期刊>IEEE Transactions on Signal Processing >Exploiting Dynamic Sparsity for Downlink FDD-Massive MIMO Channel Tracking
【24h】

Exploiting Dynamic Sparsity for Downlink FDD-Massive MIMO Channel Tracking

机译:利用下行链路FDD-MATHIVE MIMO通道跟踪的动态稀疏性

获取原文
获取原文并翻译 | 示例

摘要

Accurate channel tracking with a small pilot overhead is vital for real-time massive multiple-input and multiple-output (MIMO) communication over a dynamic channel. Recently, compressive sensing has been applied to reduce the pilot overheads by exploiting the spatial and/or temporal correlation of massive MIMO channels. However, most existing channel estimation and tracking algorithms are based on oversimplified channel models with restrictive assumptions, and thus perform poorly under realistic channels. In this paper, we consider downlink frequency division duplexing-massive MIMO system operating with limited scattering around the base station and flat fading channel is considered. We propose a two-dimensional Markov Model (2D-MM) to capture the 2-D dynamic sparsity (i.e., structured sparsity in the spatial domain and probabilistic temporal dependency of channel in the temporal domain) of massive MIMO channels. The 2D-MM has the flexibility to model different propagation environments in practice. We derive an effective message passing algorithm called dynamic turbo orthogonal approximate message passing (D-TOAMP) to recursively track a dynamic massive MIMO channel with a 2D-MM prior. The proposed D-TOAMP algorithm does not require knowledge of the 2D-MM channel parameters, which could be automatically learned through the expectation maximization framework. Extensive simulations show that the proposed D-TOAMP can achieve significant gains over the existing algorithms under realistic channels.
机译:具有小型导频开销的精确频道跟踪对于实时大量多输入和在动态通道上的多输出(MIMO)通信至关重要。最近,通过利用大规模MIMO通道的空间和/或时间相关来施加压缩感测以减少导频开销。然而,大多数现有信道估计和跟踪算法基于具有限制性假设的超简化信道模型,因此在现实频道下执行不良。在本文中,考虑了在基站周围的有限散射和扁平衰落通道的下行链路频分双工 - 大规模MIMO系统。我们提出了一种二维马尔可夫模型(2d-mm),以捕获大规模MIMO通道的2-D动态稀疏性(即,在空间域中的空间域的结构稀疏性和概率域)的大规模MIMO信道的概率。 2D-MM在实践中具有模拟不同传播环境的灵活性。我们得出了一种有效的消息传递算法,称为动态Turbo正交近似消息传递(D-Toamp),以递归地跟踪具有2d-mm的动态大规模MIMO信道。所提出的D-ToAMP算法不需要了解2D-MM信道参数,可以通过期望最大化框架自动学习。广泛的模拟表明,所提出的D-ToAMP可以在现实渠道下的现有算法上实现显着提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号