首页> 外文期刊>IEEE Transactions on Signal Processing >Exploiting Dynamic Sparsity for Downlink FDD-Massive MIMO Channel Tracking
【24h】

Exploiting Dynamic Sparsity for Downlink FDD-Massive MIMO Channel Tracking

机译:利用动态稀疏性进行下行FDD大规模MIMO信道跟踪

获取原文
获取原文并翻译 | 示例

摘要

Accurate channel tracking with a small pilot overhead is vital for real-time massive multiple-input and multiple-output (MIMO) communication over a dynamic channel. Recently, compressive sensing has been applied to reduce the pilot overheads by exploiting the spatial and/or temporal correlation of massive MIMO channels. However, most existing channel estimation and tracking algorithms are based on oversimplified channel models with restrictive assumptions, and thus perform poorly under realistic channels. In this paper, we consider downlink frequency division duplexing-massive MIMO system operating with limited scattering around the base station and flat fading channel is considered. We propose a two-dimensional Markov Model (2D-MM) to capture the 2-D dynamic sparsity (i.e., structured sparsity in the spatial domain and probabilistic temporal dependency of channel in the temporal domain) of massive MIMO channels. The 2D-MM has the flexibility to model different propagation environments in practice. We derive an effective message passing algorithm called dynamic turbo orthogonal approximate message passing (D-TOAMP) to recursively track a dynamic massive MIMO channel with a 2D-MM prior. The proposed D-TOAMP algorithm does not require knowledge of the 2D-MM channel parameters, which could be automatically learned through the expectation maximization framework. Extensive simulations show that the proposed D-TOAMP can achieve significant gains over the existing algorithms under realistic channels.
机译:精确的信道跟踪和较小的导频开销对于通过动态信道进行实时大规模多输入多输出(MIMO)通信至关重要。近来,已经通过利用大规模MIMO信道的空间和/或时间相关性来将压缩感测应用于减少导频开销。但是,大多数现有的信道估计和跟踪算法都是基于带有限制性假设的过于简化的信道模型,因此在实际信道下的性能较差。在本文中,我们考虑了在基站和平坦衰落信道周围具有有限散射的情况下工作的下行链路频分双工大规模MIMO系统。我们提出了二维马尔可夫模型(2D-MM)来捕获大规模MIMO信道的二维动态稀疏性(即空间域中的结构性稀疏性和时域中信道的概率时间相关性)。在实际中,2D-MM可以灵活地对不同的传播环境进行建模。我们推导了一种有效的消息传递算法,称为动态Turbo正交近似消息传递(D-TOAMP),以递归方式跟踪具有2D-MM优先级的动态大规模MIMO信道。提出的D-TOAMP算法不需要2D-MM信道参数的知识,可以通过期望最大化框架自动学习。大量的仿真表明,提出的D-TOAMP可以在现实信道下比现有算法获得明显的收益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号