首页> 外文期刊>IEEE Transactions on Signal Processing >Source Resolvability of Spatial-Smoothing-Based Subspace Methods: A Hadamard Product Perspective
【24h】

Source Resolvability of Spatial-Smoothing-Based Subspace Methods: A Hadamard Product Perspective

机译:基于空间平滑的子空间方法的源解析性:Hadamard产品的视角

获取原文
获取原文并翻译 | 示例

摘要

A major drawback of subspace methods for directionof-arrival estimation is their poor performance in the presence of coherent sources. Spatial smoothing is a common solution that can be used to restore the performance of these methods in such a case at the cast of increased array size requirement. In this paper, a Hadamard product perspective of the source resolvability problem of spatial-smoothing-based subspace methods is presented. The array size that ensures resolvability is derived as a function of the source number, the rank of the source covariance matrix, and the source coherency structure. This new result improves upon previous ones and recovers them in special cases. It is obtained by answering a long-standing question first asked explicitly in 1973 as to when the Hadamard product of two singular positive-semidefinite matrices is strictly positive definite. The problem of source identifiability is discussed as an extension. Numerical results are provided that corroborate our theoretical findings.
机译:子空间方法的定位方法的主要缺点是它们在相干来源存在下的性能差。空间平滑是一种常见的解决方案,可用于在增加的阵列尺寸要求的施加时在这种情况下恢复这些方法的性能。本文提出了一种哈马德产品透视空间平滑的基于子空间方法的源解析性问题。确保解析性的数组大小是源码的函数,源协方差矩阵的秩和源相干结构的函数。这种新结果可以改善以前的结果,并在特殊情况下恢复它们。通过回答长期问题而获得,在1973年首次明确地提出的问题,即两种奇异正半纤维矩阵的Hadamard产物是严格的积极明确的。源可识别性问题被讨论为扩展名。提供了数值结果,以证实我们的理论发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号