首页> 外文期刊>IEEE Transactions on Signal Processing >Distributed Optimal Linear Fusion Predictors and Filters for Systems With Random Parameter Matrices and Correlated Noises
【24h】

Distributed Optimal Linear Fusion Predictors and Filters for Systems With Random Parameter Matrices and Correlated Noises

机译:具有随机参数矩阵和相关噪声的系统的分布式最优线性融合预测器和滤波器

获取原文
获取原文并翻译 | 示例

摘要

A Kalman-like recursive distributed optimal linear fusion predictor (RDOLFP) without feedback in the linear unbiased minimum variance sense is presented for multi-sensor discrete-time linear stochastic systems with random parameter matrices and correlated noises. Local predictions from sensors are sent to a fusion center to fuse with a prior fusion predictor. The proposed RDOLFP without feedback achieves better accuracy than distributed fusion predictors described in the literature that only weight fusion of local predictors, but worse accuracy than a centralized fusion predictor. A RDOLFP with feedback that has the same estimation accuracy as a centralized fusion predictor is also presented. Its optimality is strictly proven. The stability and steady-state properties of the proposed fusion predictors are analyzed. Distributed optimal linear fusion filters with and without feedback, based on the proposed RDOLFPs, are also presented. Two examples demonstrate the effectiveness of the proposed algorithms.
机译:针对具有随机参数矩阵和相关噪声的多传感器离散时间线性随机系统,提出了一种无反馈的线性无偏最小方差意义下的卡尔曼式递归分布最优线性融合预测器(RDOLFP)。来自传感器的本地预测被发送到融合中心,以与先前的融合预测器融合。所提出的没有反馈的RDOLFP比文献中描述的仅对局部预测器加权加权的分布式融合预测器具有更好的准确性,但比集中式融合预测器具有较差的准确性。还提出了一种具有反馈的RDOLFP,其反馈准确度与集中式融合预测器相同。其最优性已得到严格证明。分析了所提出的融合预测因子的稳定性和稳态特性。还提出了基于建议的RDOLFP的带反馈和不带反馈的分布式最优线性融合滤波器。两个例子证明了所提出算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号