首页> 外文期刊>IEEE Transactions on Signal Processing >Scalable and Robust Community Detection With Randomized Sketching
【24h】

Scalable and Robust Community Detection With Randomized Sketching

机译:具有随机草图的可扩展且强大的社区检测

获取原文
获取原文并翻译 | 示例

摘要

This article explores and analyzes the unsupervised clustering of large partially observed graphs. We propose a scalable and provable randomized framework for clustering graphs generated from the stochastic block model. The clustering is first applied to a sub-matrix of the graph & x0027;s adjacency matrix associated with a reduced graph sketch constructed using random sampling. Then, the clusters of the full graph are inferred based on the clusters extracted from the sketch using a correlation-based retrieval step. Uniform random node sampling is shown to improve the computational complexity over clustering of the full graph when the cluster sizes are balanced. A new random degree-based node sampling algorithm is presented which significantly improves upon the performance of the clustering algorithm even when clusters are unbalanced. This framework improves the phase transitions for matrix-decomposition-based clustering with regard to computational complexity and minimum cluster size, which are shown to be nearly dimension-free in the low inter-cluster connectivity regime. A third sampling technique is shown to improve balance by randomly sampling nodes based on spatial distribution. We provide analysis and numerical results using a convex clustering algorithm based on matrix completion.
机译:本文探讨并分析了部分大观察图的无监督聚类。我们提出了一种可扩展且可证明的随机框架,用于对从随机块模型生成的图进行聚类。聚类首先应用于图的子矩阵,该图与使用随机采样构造的简化图草图相关联。然后,使用基于相关性的检索步骤,基于从草图中提取的聚类来推断完整图的聚类。当群集大小平衡时,均匀随机节点采样可以改善整个图的群集计算复杂性。提出了一种新的基于随机度的节点采样算法,即使在集群不平衡的情况下,该算法也显着提高了聚类算法的性能。此框架在计算复杂度和最小群集大小方面改善了基于矩阵分解的群集的相变,这在低群集间连接方式中几乎没有维度。显示了第三种采样技术,可以通过基于空间分布对节点进行随机采样来改善平衡。我们使用基于矩阵完成度的凸聚类算法提供分析和数值结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号