首页> 外文期刊>IEEE Transactions on Signal Processing >Suboptimal Low Complexity Joint Multi-Target Detection and Localization for Non-Coherent MIMO Radar With Widely Separated Antennas
【24h】

Suboptimal Low Complexity Joint Multi-Target Detection and Localization for Non-Coherent MIMO Radar With Widely Separated Antennas

机译:宽分离天线的非相干MIMO雷达次优低复杂度联合多目标检测与定位

获取原文
获取原文并翻译 | 示例

摘要

In this article, the problem of simultaneously detecting and localizing multiple targets in homogeneous noise environment is considered for non-coherent multiple-input multiple-output (MIMO) radar with widely separated antennas. By assuming that the a prior knowledge of target number is available, an optimal solution to this problem is presented first. It is essentially a maximum-likelihood (ML) estimator searching the parameters of interest in a high-dimensional state space. However, the complexity of this solution increases exponentially with the number $G$ of targets. Besides, if the number of targets is unknown, a multi-hypothesis testing strategy to verify all the possible hypotheses on target number is required, which further complicates this method. In order to devise computationally feasible methods for practical applications, we split the high-dimensional maximization into $G$ disjoint sub-optimization problems by sequentially detecting targets and then clearing their interference for the subsequent detection of remaining targets. In this way, we further propose two fast and robust suboptimal solutions which allow to trade performance for a much lower implementation complexity. In addition, the multi-hypothesis testing is no longer required when target number is unknown. Simulation results show that the proposed algorithms can correctly detect and accurately localize multiple targets even when targets lie in the same range bins. Experimental data recorded by three small radars are also provided to demonstrate the efficacy of the proposed algorithms.
机译:在本文中,考虑了在天线分离较远的非相干多输入多输出(MIMO)雷达中,在均匀噪声环境中同时检测和定位多个目标的问题。通过假定可获得目标数量的先验知识,首先提出该问题的最佳解决方案。本质上,它是在高维状态空间中搜索感兴趣参数的最大似然(ML)估计器。但是,此解决方案的复杂度随目标数量$ G $呈指数增长。此外,如果目标数量未知,则需要一种多假设检验策略来验证目标数量上所有可能的假设,这会使该方法更加复杂。为了设计出在实际应用中可行的计算方法,我们通过顺序检测目标,然后清除它们的干扰以进行后续目标检测,将高维最大化分解为$ G $不相交子优化问题。通过这种方式,我们进一步提出了两个快速而健壮的次优解决方案,这些解决方案允许以较低的实现复杂性来交换性能。另外,当目标数目未知时,不再需要进行多重假设检验。仿真结果表明,所提出的算法即使目标位于相同的距离范围内,也能正确检测并准确定位多个目标。还提供了由三个小型雷达记录的实验数据,以证明所提出算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号