首页> 外文期刊>IEEE Transactions on Signal Processing >Guaranteed Localization of More Sources Than Sensors With Finite Snapshots in Multiple Measurement Vector Models Using Difference Co-Arrays
【24h】

Guaranteed Localization of More Sources Than Sensors With Finite Snapshots in Multiple Measurement Vector Models Using Difference Co-Arrays

机译:在使用差分协数组的多个测量矢量模型中,保证了比带有有限快照的传感器更多的源定位

获取原文
获取原文并翻译 | 示例

摘要

The Multiple Measurement Vector (MMV) problem is central to sparse signal processing, where the goal is to recover the common support of a set of unknown sparse vectors of size N, from L compressed measurement vectors, each of size M N. Recent advances in correlation-aware and Bayesian techniques for MMV models show promising evidence that under appropriate assumptions, it is possible to recover supports of size (s) larger than the dimension (M) of each measurement vector. However, these results are primarily asymptotic in L, and cannot provide support recovery guarantees for finite L. This paper overcomes such drawback by focusing on a broader family of correlation-aware optimization problems (which include convex problems), and establishing rigorous non-asymptotic probabilistic guarantees in the regime s > M when the measurements are collected using appropriately designed sparse sensor arrays (such as nested and coprime). Assuming the source locations obey a certain "minimum separation" condition, we develop uniform upper bounds on the estimation error that is obeyed by any algorithm belonging to this family, and utilize this bound to ensure probabilistic support recovery in the regime s > M. Our results crucially rely upon (i) the unique geometry of the difference co-array of the sparse arrays, and (ii) certain non-negativity constraints on the optimization variable. As a result of independent interest, we also show that this upper bound is tight with respect to the dimension N. Extensive numerical simulations (including phase transition plots) are presented to validate the theoretical claims.
机译:多重测量向量(MMV)问题是稀疏信号处理的核心,目标是从L个压缩的测量向量(每个大小为M N)中恢复大小为N的一组未知稀疏向量的共同支持。 MMV模型的相关感知和贝叶斯技术的进步表明,有前途的证据表明,在适当的假设下,有可能恢复大小大于每个测量向量维数(M)的支持。但是,这些结果主要是L的渐近性,不能为有限的L提供支持恢复保证。本文通过关注更广泛的相关感知优化问题(包括凸问题)并建立严格的非渐近性来克服了此类缺陷。使用适当设计的稀疏传感器阵列(例如嵌套和互质)收集测量值时,s> M体制中的概率保证。假设源位置遵循某个“最小分离”条​​件,我们针对属于该族的任何算法所遵循的估计误差制定统一的上限,并利用该界限来确保在s> M范围内的概率支持恢复。结果关键取决于(i)稀疏阵列的差分协阵列的独特几何形状,以及(ii)优化变量上的某些非负性约束。作为独立利益的结果,我们还表明,这个上限相对于维度N是紧的。提出了广泛的数值模拟(包括相变图)来验证理论要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号