首页> 外文期刊>Signal processing >Low complexity multiple acoustic source localization in sensor networks based on energy measurements
【24h】

Low complexity multiple acoustic source localization in sensor networks based on energy measurements

机译:基于能量测量的传感器网络中的低复杂度多声源定位

获取原文
获取原文并翻译 | 示例

摘要

This work addresses the problem of estimating the locations of multiple acoustic sources by a network of distributed energy measuring sensors. The maximum likelihood (ML) solution to this problem is related to the optimization of a non-convex function of, usually, many variables. Thus, search-based methods of high complexity are required in order to yield an accurate solution. Considerable reduction of the complexity can be achieved by means of an alternating projection (AP) algorithm that decomposes the original problem into a number of simpler, yet also non-convex, optimization steps. The particular form of the derived cost functions of each such optimization step indicates that, in some cases, an approximate form of these cost functions can be used. These approximate cost functions can be evaluated using considerably lower computational complexity. Thus, a low-complexity version of the AP algorithm is proposed. Extensive simulation results demonstrate that the proposed algorithm offers a performance close to that of the exact AP implementation, and in some cases, similar performance to that of the ML estimator.
机译:这项工作解决了通过分布式能量测量传感器网络估算多个声源位置的问题。此问题的最大似然(ML)解决方案通常涉及许多变量的非凸函数的优化。因此,需要高复杂度的基于搜索的方法以产生准确的解决方案。可以通过交替投影(AP)算法将复杂度显着降低,该算法将原始问题分解为多个更简单的非凸优化步骤。每个此类优化步骤的派生成本函数的特定形式表示,在某些情况下,可以使用这些成本函数的近似形式。可以使用相当低的计算复杂度来评估这些近似成本函数。因此,提出了一种AP算法的低复杂度版本。大量的仿真结果表明,提出的算法提供的性能接近于精确的AP实现,并且在某些情况下,其性能与ML估计器的性能相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号