首页> 外文期刊>IEEE Transactions on Signal Processing >Robust Distributed Diffusion Recursive Least Squares Algorithms With Side Information for Adaptive Networks
【24h】

Robust Distributed Diffusion Recursive Least Squares Algorithms With Side Information for Adaptive Networks

机译:自适应网络中带有边信息的鲁棒分布式扩散递推最小二乘算法

获取原文
获取原文并翻译 | 示例

摘要

This work develops robust diffusion recursive least-squares algorithms to mitigate the performance degradation often experienced in networks of agents in the presence of impulsive noise. The first algorithm minimizes an exponentially weighted least-squares cost function subject to a time-dependent constraint on the squared norm of the intermediate update at each node. A recursive strategy for computing the constraint is proposed using side information from the neighboring nodes to further improve the robustness. We also analyze the mean-square convergence behavior of the proposed algorithm. The second proposed algorithm is a modification of the first one based on the dichotomous coordinate descent iterations. It has a performance similar to that of the former, however, its complexity is significantly lower especially when input regressors of agents have a shift structure and it is well suited to practical implementation. Simulations show the superiority of the proposed algorithms over previously reported techniques in various impulsive noise scenarios.
机译:这项工作开发了鲁棒的扩散递归最小二乘算法,以减轻在存在脉冲噪声的情况下代理网络中经常遇到的性能下降。第一种算法在每个节点上对中间更新的平方范数施加时间依赖约束的情况下,将指数加权的最小二乘成本函数最小化。提出了一种使用邻近节点的边信息来计算约束的递归策略,以进一步提高鲁棒性。我们还分析了该算法的均方收敛行为。第二种提出的算法是基于二分坐标下降迭代的第一种算法的修改。它具有与前者类似的性能,但是,它的复杂度大大降低,尤其是当代理的输入回归变量具有移位结构并且非常适合实际实现时。仿真表明,在各种脉冲噪声情况下,所提出的算法优于先前报道的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号