首页> 外文期刊>IEEE Transactions on Signal Processing >Robust PCA via$ell _{0}$-$ell _{1}$Regularization
【24h】

Robust PCA via$ell _{0}$-$ell _{1}$Regularization

机译:通过 $ ell _ {0} $ - $ ell _ {1} $ 正则化

获取原文
获取原文并翻译 | 示例

摘要

We study the problem of low-rank and sparse decomposition from possibly noisy observations, known as Robust PCA, where the sparse component can be seen as outliers. We first propose a modified objective function where the nuclear norm captures the low-rank term,$ell _0$-“norm” addresses the sparse outlier term, and an$ell _1$-norm to deal with the additive noise term. The associated algorithm, termed sparsity regularized principal component pursuit (SRPCP), is shown to converge. Under certain model and algorithm parameter settings, it is shown that SRPCP can recover the low-rank component and sparse component exactly in the noiseless case. In the noisy case, we first prove that the widely used principal component pursuit (PCP) method, which was designed for the noiseless case, is actually stable to dense noise. Then, we show that SRPCP has smaller estimation error bound, and can identify outlier entries without any false alarm. Another important byproduct of our analysis is the result that PCP with missing entries is also stable to dense noise. We further propose another objective function which replaces the above nuclear norm by the log-determinant. The proposed algorithm, termed iterative reweighted sparsity regularized principal component pursuit, is also shown to converge. In each iteration, it solves a weighted nuclear norm regularized robust matrix completion problem. We propose an alternating direction method of multipliers algorithm to solve this nonconvex subproblem, which also converges. Empirical studies demonstrate the efficacy of the proposed$ell _{0}$-$ell _{1}$regularization framework to deal with the outliers as well as its advantage over the existing state-of-the-art methods.
机译:我们从可能嘈杂的观测值(称为“稳健PCA”)研究低秩和稀疏分解的问题,其中稀疏分量可以看作是异常值。我们首先提出一个修改后的目标函数,其中核范数捕获了低阶项, n $ ell _0 $ n-“范数”处理稀疏的异常项,并且 n $ ell _1 $ n-norm处理与加性噪声项。关联算法称为稀疏正则化主成分追踪(SRPCP),显示收敛。在一定的模型和算法参数设置下,表明在无噪声的情况下,SRPCP可以准确地恢复低阶分量和稀疏分量。在嘈杂的情况下,我们首先证明针对无噪声情况设计的广泛使用的主成分追踪(PCP)方法实际上对密集噪声稳定。然后,我们证明SRPCP具有较小的估计误差范围,并且可以识别异常值条目而没有任何错误警报。我们分析的另一个重要副产品是结果,即缺少条目的PCP对稳定的噪声也很稳定。我们进一步提出了另一个目标函数,用对数行列式代替了上述核规范。所提出的算法,称为迭代重加权稀疏正则化主成分追踪,也证明是收敛的。在每次迭代中,它都解决了加权核范数正则化鲁棒矩阵完成问题。我们提出了乘数算法的交替方向方法来解决这个非凸子问题,该子问题也收敛。经验研究表明,提出的 n <在线公式xmlns:mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “ http://www.w3 .org / 1999 / xlink “> $ ell _ {0} $ n- n $ ell _ {1} $ nregularization框架来处理离群值及其与现有状态相比的优势艺术方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号