首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >Optimal Seismic Reflectivity Inversion: Data-Driven $ell_p$ -Loss- $ell_q$ -Regularization Sparse Regression
【24h】

Optimal Seismic Reflectivity Inversion: Data-Driven $ell_p$ -Loss- $ell_q$ -Regularization Sparse Regression

机译:最佳地震反射率反转:数据驱动<内联公式> $ ell_p $ -loss- <内联公式> $ ell_q $ --regularization稀疏回归

获取原文
获取原文并翻译 | 示例

摘要

Seismic reflectivity inversion is widely applied to improve the seismic resolution to obtain detailed underground understandings. Based on the convolution model, seismic inversion removes the wavelet effect by solving an optimization problem. Taking advantage of the sparsity property, the l(1)-norm is commonly adopted in the regularization terms to overcome the noise/interference vulnerability observed in the l(p)-losses minimization. However, no one has provided a deterministic conclusion that l(1)-norm regularization is the hest choice for seismic reflectivity inversion. Instead of using an unproved fixed regularization norm, we propose an optimal seismic reflectivity inversion approach. Our method adaptively adopts an l(p) -loss-f(q) -regularization (i.e., l(p)(,q)-regularization) for p = 2, 0 < q < 1 to estimate a more accurate and detailed reflectivity profile. In addition, we employ a K-fold cross-validation (CV)-based approach to obtain the optimal damping factor lambda to further improve the seismic inversion results. The letter starts with the introduction of nonconvex constraint for seismic inversion and the necessity of the l(q) -norm regularization. Then, the majorization-minimization and CV algorithms are briefly described. The performance of the proposed seismic inversion approach is evaluated through synthetic examples and a field example from the Bohai Bay Basin, China.
机译:地震反射率倒置被广泛应用于改善地震分辨率,以获得详细的地下理解。基于卷积模型,地震反演通过解决优化问题来消除小波效果。利用稀疏性属性,L(1)-NORM通常在正则化术语中采用,以克服L(P)-Losses最小化中观察到的噪声/干扰漏洞。然而,没有人提供了一个确定性的结论,即L(1) - 诺尔正规化是地震反射率反转的最终选择。我们提出了一种最佳地震反射逆转方法而不是使用未经用的固定正则化规范。我们的方法适用于L(p)-loss-f(q) - 注释(即L(p)(,q)-regular化)对于p = 2,0

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号