首页> 外文期刊>IEEE Transactions on Signal Processing >Non-Iterative MDS Method for Collaborative Network Localization With Sparse Range and Pointing Measurements
【24h】

Non-Iterative MDS Method for Collaborative Network Localization With Sparse Range and Pointing Measurements

机译:具有稀疏范围和指向性度量的协作网络本地化的非迭代MDS方法

获取原文
获取原文并翻译 | 示例

摘要

Multi-agent localization is a basic requirement for many networked applications. The particular application to swarming unmanned aerial vehicles (UAVs) or munitions requires spatial coordination of agents, including the ability to assume and maintain a prescribed flight formation. An in-flight awareness of network morphology and node location is therefore needed. While global navigation satellite systems offer an attractive solution, signal occlusion, spoofing, and jamming present unacceptable vulnerabilities—particularly for mission-critical operations. Alternative network localization methods using inter-agent radio frequency ranging and Angle of Arrival have been well studied over the past 15 years, but existing algorithms are not well suited to fast-moving networks. Iterative methods tend to converge slowly. Faster noniterative multi-dimensional scaling (MDS) methods for range, bearing, or vector measurements have also been formulated. However, these MDS methods generally require the full pairwise inter-agent measurement matrix—placing a severe requirement on swarm connectivity and leading to low tolerance for missing or badly estimated measurements. Even vector-based MDS, which incorporates both range and direction constraints, is shown here to require 4-vertex connectivity to achieve perfect localization. Results from rigidity theory, however, suggest that a lower connectivity threshold should be sufficient to guarantee a unique configuration (up to translation and rotation). In contrast, our proposed “vertex resequencing” and “edge resequencing” techniques further lower the vertex-connectivity threshold to 3 and 2, respectively. These localization techniques, which extend vector-based MDS with Nyström approximation, prescribe a graph-based kernel sampling scheme and weighted coordinate reconstruction that suppress the effect of missing measurements.
机译:多代理程序本地化是许多联网应用程序的基本要求。在向无人驾驶飞机(UAV)或军火群集的特定应用中,需要对人员进行空间协调,包括承担和维持规定的飞行编队的能力。因此,需要对网络形态和节点位置进行动态感知。尽管全球导航卫星系统提供了一种有吸引力的解决方案,但信号遮挡,欺骗和干扰仍然存在无法接受的漏洞,尤其是对于关键任务操作而言。在过去15年中,对使用代理间射频测距和到达角的替代网络定位方法进行了很好的研究,但是现有算法不适用于快速移动的网络。迭代方法趋于收敛缓慢。还已经制定了用于距离,方位或矢量测量的更快的非迭代多维缩放(MDS)方法。但是,这些MDS方法通常需要完整的成对代理间测量矩阵,这对集群连接提出了严格的要求,并且导致对丢失或估计错误的测量结果的容忍度较低。即使基于矢量的MDS(包含范围和方向约束)也显示为要求4顶点连接才能实现完美的定位。但是,刚度理论的结果表明,较低的连接性阈值应足以保证唯一的配置(直至平移和旋转)。相反,我们提出的“顶点重新排序”和“边缘重新排序”技术进一步将顶点连接性阈值分别降低到3和2。这些本地化技术使用Nyström近似扩展了基于矢量的MDS,规定了基于图的内核采样方案和加权坐标重构,从而抑制了丢失测量的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号