首页> 外文期刊>IEEE Transactions on Signal Processing >Subband decomposition: an LMS-based algorithm to approximate the perfect reconstruction bank in the general case
【24h】

Subband decomposition: an LMS-based algorithm to approximate the perfect reconstruction bank in the general case

机译:子带分解:基于LMS的算法,在一般情况下近似完美的重建库

获取原文
获取原文并翻译 | 示例

摘要

An algorithm based on least mean squares (LMS) is described. Given an arbitrary invertible decomposition/decimation process, the algorithm will find the finite impulse response reconstruction filters which best approximate the perfect reconstruction ones. By allowing the reconstruction filters' impulse responses to be sufficiently long, the quality of the approximation can be made as good as required. Two examples are presented for the implementation of this algorithm: one in the case of a decomposition by a filter bank of Galand (1977), where the reconstruction bank is already known, the other in the situation of a two-subband decomposition where one of the subbands covers two-thirds of the frequency space, and the other covers the remaining one-third.
机译:描述了基于最小均方(LMS)的算法。给定任意的可逆分解/抽取过程,该算法将找到最能逼近完美重构滤波器的有限脉冲响应重构滤波器。通过使重建滤波器的脉冲响应足够长,可以使近似质量达到要求。为实现该算法提供了两个示例:一个是在加兰(Galand)的滤波器组(1977)进行分解的情况下,其中重建组是已知的,另一个是在两个子带分解的情况下,其中一个是子带覆盖了三分之二的频率空间,另一个覆盖了剩余的三分之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号