首页> 外文期刊>IEEE Transactions on Signal Processing >A performance analysis of subspace-based methods in the presence of model errors. I. The MUSIC algorithm
【24h】

A performance analysis of subspace-based methods in the presence of model errors. I. The MUSIC algorithm

机译:在存在模型错误的情况下,基于子空间的方法的性能分析。一,MUSIC算法

获取原文
获取原文并翻译 | 示例

摘要

Application of subspace-based algorithms to narrowband direction-of-arrival (DOA) estimation requires that both the array response in all directions of interest and the spatial covariance of the noise must be known. In practice, however, neither of these quantities is known precisely. Depending on the degree to which they deviate from their nominal values, serious performance degradation can result. The performance of the MUSIC algorithm is examined for situations in which the noise covariance and array response are perturbed from their assumed values. Theoretical expressions for the error in the MUSIC DOA estimates are derived and compared with simulations performed for several representative cases, and with the appropriate Cramer-Rao bound. An optimally weighted version of MUSIC is proposed for a particular class of array errors.
机译:将基于子空间的算法应用于窄带到达方向(DOA)估计要求在所有感兴趣方向上的阵列响应和噪声的空间协方差都必须已知。然而,实际上,这两个量都不是精确已知的。根据它们偏离其标称值的程度,可能导致严重的性能下降。在噪声协方差和阵列响应从其假定值受到干扰的情况下,将检查MUSIC算法的性能。推导了MUSIC DOA估计中的误差的理论表达式,并将其与针对几种代表性情况下进行的模拟以及适当的Cramer-Rao界限进行了比较。针对特定类别的阵列错误,提出了MUSIC的最佳加权版本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号