首页> 外文期刊>IEEE Transactions on Signal Processing >A performance analysis of subspace-based methods in the presence of model error. II. Multidimensional algorithms
【24h】

A performance analysis of subspace-based methods in the presence of model error. II. Multidimensional algorithms

机译:在存在模型错误的情况下,基于子空间的方法的性能分析。二。多维算法

获取原文
获取原文并翻译 | 示例

摘要

For pt.I, see ibid., vol.40, no.7, p.1758-74 (1992). In pt.I the performance of the MUSIC algorithms for narrowband direction-of-arrival (DOA) estimation when the array manifold and noise covariance are not correctly modeled was investigated. This analysis is extended to multidimensional subspace-based algorithms including deterministic (or conditional) maximum likelihood, MD-MUSIC, weighted subspace fitting (WSF), MODE, and ESPRIT. A general expression for the variance of the DOA estimates that can be applied to any of the above algorithms and to any of a wide variety of scenarios is presented. Optimally weighted subspace fitting algorithms are presented for special cases involving random unstructured errors of the array manifold and noise covariance. It is shown that one-dimensional MUSIC outperforms all of the above multidimensional algorithms for random angle-independent array perturbations.
机译:关于第一点,参见同上,第40卷,第7期,第1758-74页(1992年)。在第一篇中,研究了当未正确建模阵列流形和噪声协方差时,MUSIC算法用于窄带到达方向(DOA)估计的性能。该分析扩展到基于多维子空间的算法,包括确定性(或条件)最大似然,MD-MUSIC,加权子空间拟合(WSF),MODE和ESPRIT。提出了DOA估计方差的一般表达式,该表达式可应用于上述任何算法以及各种情况中的任何一种。针对涉及阵列流形的随机非结构化误差和噪声协方差的特殊情况,提出了最优加权子空间拟合算法。结果表明,一维MUSIC优于所有以上针对随机角度无关的阵列扰动的多维算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号