首页> 外文期刊>IEEE Transactions on Signal Processing >Maximum likelihood estimation for long-range target tracking using passive sonar measurements
【24h】

Maximum likelihood estimation for long-range target tracking using passive sonar measurements

机译:使用被动声纳测量进行远程目标跟踪的最大似然估计

获取原文
获取原文并翻译 | 示例

摘要

A Newton-type method is used to solve the target motion analysis (TMA) problem with respect to bearing and frequency measurements from a passive sonar system. In many long-range sonar situations the TMA problem is ill conditioned and suffers from a small signal-to-noise ratio. Although Kalman filters have been investigated extensively it is known that maximum likelihood (ML) estimation is superior in these cases. The main reason for the good performance of the ML method is that the underlying numerical optimization problem deals with the ill conditioning of the problem. This work illustrates how the conditioning depends on the geometry of the tracks and the signal-to-noise ratio. Monte Carlo simulations with respect to the measurement noise show the influence on the ML estimation performance for three specific cases concerning multileg situations and bottom bounce measurements.
机译:牛顿型方法用于解决与被动声纳系统的方位和频率测量有关的目标运动分析(TMA)问题。在许多远程声纳情况下,TMA问题病情严重,信噪比也很小。尽管已对卡尔曼滤波器进行了广泛研究,但众所周知,在这些情况下,最大似然(ML)估计更为出色。 ML方法的良好性能的主要原因是潜在的数值优化问题处理了问题的不适条件。这项工作说明了调节如何取决于轨道的几何形状和信噪比。关于测量噪声的蒙特卡洛模拟显示了在涉及多腿情况和底部反弹测量的三种特定情况下对ML估计性能的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号