首页> 外文期刊>IEEE Transactions on Signal Processing >Weighted subspace methods and spatial smoothing: analysis and comparison
【24h】

Weighted subspace methods and spatial smoothing: analysis and comparison

机译:加权子空间方法和空间平滑:分析和比较

获取原文
获取原文并翻译 | 示例

摘要

The effect of using a spatially smoothed forward-backward covariance matrix on the performance of weighted eigen-based state space methods/ESPRIT, and weighted MUSIC for direction-of-arrival (DOA) estimation is analyzed. Expressions for the mean-squared error in the estimates of the signal zeros and the DOA estimates, along with some general properties of the estimates and optimal weighting matrices, are derived. A key result is that optimally weighted MUSIC and weighted state-space methods/ESPRIT have identical asymptotic performance. Moreover, by properly choosing the number of subarrays, the performance of unweighted state space methods can be significantly improved. It is also shown that the mean-squared error in the DOA estimates is independent of the exact distribution of the source amplitudes. This results in a unified framework for dealing with DOA estimation using a uniformly spaced linear sensor array and the time series frequency estimation problems.
机译:分析了使用空间平滑的前后协方差矩阵对基于加权本征状态空间方法/ ESPRIT和加权MUSIC的到达方向(DOA)估计性能的影响。推导了信号零和DOA估计的均方误差表达式,以及估计和最佳加权矩阵的一些一般属性。关键结果是最优加权MUSIC和加权状态空间方法/ ESPRIT具有相同的渐近性能。此外,通过适当选择子阵列的数量,可以显着提高未加权状态空间方法的性能。还表明,DOA估计中的均方误差与源幅度的确切分布无关。这样就形成了一个统一的框架,用于使用均匀间隔的线性传感器阵列处理DOA估计和时间序列频率估计问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号