首页> 外文期刊>IEEE Transactions on Signal Processing >Adaptive filtering of nonlinear systems with memory by quantized mean field annealing (digital subscriber loop example)
【24h】

Adaptive filtering of nonlinear systems with memory by quantized mean field annealing (digital subscriber loop example)

机译:通过量化平均场退火对带有记忆的非线性系统进行自适应滤波(数字用户环路示例)

获取原文
获取原文并翻译 | 示例

摘要

A technique for adaptive filtering of nonlinear systems with memory that combines quantized mean field annealing (QMFA) and conventional recursive-least-squares/fast-transversal-filter (RLS/FTF) adaptive filtering is developed. This technique can efficiently handle large-order nonlinearities with or without memory. The nonlinear channel is divided into a memory nonlinearity followed by a dispersive linear system. QMFA is applied to obtain the coefficients and the order of the memory of the nonlinearity, and RLS/FTF is applied to determine the weights of the dispersive linear system. Statistical thermodynamic analysis that provides theoretical measures for making annealing algorithms computationally efficient. The method is applied to a full duplex digital subscriber loop. Simulations show a performance improvement of over 40 dB compared to ordinary RLS/FTF and steepest descent algorithms, and the solution is robust.
机译:开发了一种结合了量化平均场退火(QMFA)和常规递归最小二乘/快速遍历滤波器(RLS / FTF)自适应滤波的带有存储器的非线性系统自适应滤波技术。该技术可以有效地处理带有或不带有存储器的大阶非线性。非线性通道分为记忆非线性和分散线性系统。 QMFA用于获得非线性存储的系数和阶数,RLS / FTF用于确定色散线性系统的权重。统计热力学分析为退火算法的计算效率提供了理论措施。该方法被应用于全双工数字用户环路。仿真显示,与普通的RLS / FTF和最陡的下降算法相比,性能提高了40 dB以上,并且该解决方案非常可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号