首页> 外文期刊>IEEE Transactions on Signal Processing >Subspace invariance: the RO-FST and TQR-SVD adaptive subspace tracking algorithms
【24h】

Subspace invariance: the RO-FST and TQR-SVD adaptive subspace tracking algorithms

机译:子空间不变性:RO-FST和TQR-SVD自适应子空间跟踪算法

获取原文
获取原文并翻译 | 示例

摘要

Subspace decomposition and tracking are quintessential ingredients in high-resolution adaptive array processing. MUSIC, minimum norm, and eigenbeamforming (projection nulling) are examples. Unfortunately, high computational complexity limits the use of subspace tracking in real-time systems. Adaptive algorithms with lower complexities have been proposed to address this limitation. The authors compare two such algorithms: TQR-SVD and fast subspace tracking (FST). Both have lower complexity than traditional approaches, with FST's complexity being lower than TQR-SVD's by a factor of r (the dimension of the dominant subspace). The authors show that a simplified version of FST (called RO-FST-refinement only-FST) produces the same subspace estimates as the TQR-SVD algorithm.
机译:子空间分解和跟踪是高分辨率自适应阵列处理中的典型要素。 MUSIC,最小范数和特征波束成形(投影归零)就是示例。不幸的是,高计算复杂度限制了实时系统中子空间跟踪的使用。已经提出了具有较低复杂度的自适应算法来解决该限制。作者比较了两种这样的算法:TQR-SVD和快速子空间跟踪(FST)。两者的复杂度都比传统方法低,FST的复杂度比TQR-SVD低了r倍(主导子空间的维数)。作者表明,FST的简化版本(称为RO-FST-refinement only-FST)产生与TQR-SVD算法相同的子空间估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号