首页> 外文期刊>IEEE Transactions on Signal Processing >Noncausal nonminimum phase ARMA modeling of non-Gaussian processes
【24h】

Noncausal nonminimum phase ARMA modeling of non-Gaussian processes

机译:非高斯过程的非因果非最小相位ARMA建模

获取原文
获取原文并翻译 | 示例

摘要

A method is presented for the estimation of the parameters of a noncausal nonminimum phase ARMA model for non-Gaussian random processes. Using certain higher order cepstra slices, the Fourier phases of two intermediate sequences (h/sub min/(n) and h/sub max/(n)) can be computed, where h/sub min/(n) is composed of the minimum phase parts of the AR and MA models, and h/sub max/(n) of the corresponding maximum phase parts. Under the condition that there are no zero-pole cancellations in the ARMA model, these two sequences can be estimated from their phases only, and lead to the reconstruction of the AR and MA parameters, within a scalar and a time shift. The AR and MA orders do not have to be estimated separately, but they are by product of the parameter estimation procedure. Through simulations it is shown that, unlike existing methods, the estimation procedure is fairly robust if a small order mismatch occurs. Since the robustness of the method in the presence of additive noise depends on the accuracy of the estimated phases of h/sub min/(n) and h/sub max/(n), the phase errors due to finite length data are studied and their statistics are derived.
机译:提出了一种用于估计非高斯随机过程的非因果非最小相位ARMA模型参数的方法。使用某些高阶倒谱切片,可以计算两个中间序列(h / sub min /(n)和h / sub max /(n))的傅里叶相位,其中h / sub min /(n)由以下组成: AR和MA模型的最小相位部分,以及相应最大相位部分的h / sub max /(n)。在ARMA模型中没有零极点抵消的条件下,这两个序列只能从它们的相位进行估计,并导致在标量和时移内重建AR和MA参数。 AR和MA订单不必分别估算,但是它们是参数估算程序的乘积。通过仿真表明,与现有方法不同,如果发生小阶不匹配,则估计过程非常健壮。由于在存在加性噪声的情况下该方法的鲁棒性取决于h / sub min /(n)和h / sub max /(n)估计相位的精度,因此研究了有限长度数据引起的相位误差并他们的统计数据是导出的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号